CORRENTE DE CURTO-CIRCUITO

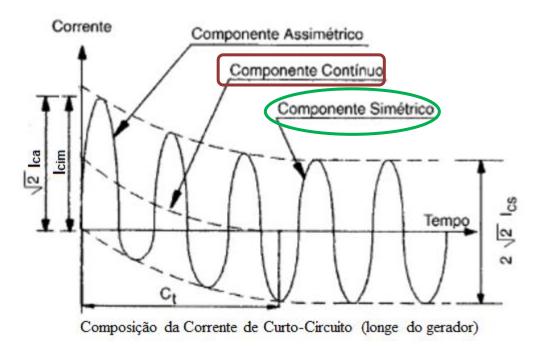
MÉTODO SIMPLIFICADO

INTRODUÇÃO

- Para elaboração do projeto elétrico, dimensionamento da proteção e coordenação de seus elementos é necessário o conhecimento das correntes de curto circuito nos pontos da instalação.
- As correntes de curto-circuito são de valores elevados, e duração de frações de segundos. (tempo de atuação da proteção)
- Sua causa mais comum é a perda da isolação de elemento energizado do sistema elétrico.
- Os danos provocados pela corrente de curto circuito ficam limitados a atuação correta dos elementos de proteção.
- A corrente de curto circuito situa-se entre 10 e 100 vezes a corrente nominal.

APLICAÇÃO DAS CORRENTES DE CURTO-CIRCUITO

- CURTO-CIRCUITO TRIFÁSICO


- ❖ Ajuste dos dispositivos de proteção contra sobrecorrentes;
- Capacidade de interrupção dos disjuntores;
- Capacidade térmica de cabos e equipamentos;
- Capacidade dinâmica dos equipamentos;
- Capacidade dinâmica de barramentos,

- CURTO-CIRCUITO FASE-TERRA

- Ajuste mínimo dos dispositivos de proteção contra sobrecorrente;
- Seção mínima dos condutores de uma malha de terra;
- Limite das tensões de passo e toque;
- Dimensionamento do resistor de aterramento (Sistema IT).

Fórmula da Corrente de Curto-Circuito

$$I_{CC} = \sqrt{2} x I_{CS} x \left[sen(\omega t + \beta - \theta) - e^{-t/C_T} x sen(\beta - \theta) \right]$$

Icc – valor instantâneo da corrente de curto-circuito num instante de tempo específico;

Ics – valor eficaz da corrente de curto-circuito simétrica;

Icim – valor de pico ou impulso da corrente de curto-circuito assimétrico;

Ica – valor eficaz da corrente de curto-circuito assimétrica;

t – tempo de duração do defeito no ponto considerado da instalação;

Ct – constante de tempo

$$C_t = \frac{X}{2 x \pi x f x R}$$

R → Resistência do circuito desde a fonte até o ponto de defeito;

X → Reatância do circuito desde a fonte até o ponto de defeito.

FATOR DE ASSIMETRIA

Em virtude da constante de tempo da componente contínua depender da Resistência (R) e Reatância (X) medida desde a fonte até o ponto de defeito, há uma relação entre aos valores eficazes das correntes simétricas e assimétricas, dado pela seguinte equação:

$$I_{ca} = I_{cs}x$$
 1 + 2 $xe^{-(2t/c_t)}$ FATOR DE ASSIMETRIA (Fa)

Onde,
 $C_t = \frac{X}{377xR}$

O Fa pode ser calculado para diferentes valores da constante de tempo e do tempo. Como R e X deverão ser valores conhecidos, é usual, se definir um tempo e calcular Fa em função da relação X/R.

Na literatura é recomendado utilizar *t=4,16ms*, que corresponde a ¼ do ciclo de 60Hz, ou seja, o valor de pico do primeiro semi-ciclo da corrente assimétrica (corrente de impulso)

Fator de Assimetria - FA para t = 1/4 ciclo

Relação	Fator de assimetria	Relação	Fator de assimetria	Relação	Fator de assimetria
X/R	FA	X/R	FA	X/R	FA
0,40	1,00	3,80	1,37	11,00	1,58
0,60	1,00	4,00	1,38	12,00	1,59
0,80	1,02	4,20	1,39	13,00	1,60
1,00	1,04	4,40	1,40	14,00	1,61
1,20	1,07	4,60	1,41	15,00	1,62
1,40	1,10	4,80	1,42	20,00	1,64
1,60	1,13	5,00	1,43	30,00	1,67
1,80	1,16	5,50	1,46	40,00	1,68
2,00	1,19	6,00	1,47	50,00	1,69
2,20	1,21	6,50	1,49	60,00	1,70
2,40	1,24	7,00	1,51	70,00	1,71
2,60	1,26	7,50	1,52	80,00	1,71
2,80	1,28	8,00	1,53	100,00	1,71
3,00	1,30	8,50	1,54	200,00	1,72
3,20	1,32	9,00	1,55	400,00	1,72
3,40	1,34	9,50	1,56	600,00	1,73
3,60	1,35	10,00	1,57	1000,00	1,73

CORRENTE DE IMPULSO

Em termos de especificação da proteção, os disjuntores devem satisfazer à corrente de impulso. Sendo a corrente de impulso o valor de pico da corrente assimétrica, pode-se escrever:

$$I_{cim} = \sqrt{2}xI_{ca}$$

METODOLOGIA GERAL DO CÁLCULO

A determinação da corrente de curto-circuito, em qualquer ponto da instalação elétrica, é baseada nas IMPEDÂNCIAS envolvidas no sistema.

A premissa simplificadora é que se calculará a corrente de curto-circuito desconsiderando a impedância equivalente do sistema formado pela geração/transmissão/distribuição. Ou seja, apenas serão consideradas as seguintes impedâncias:

- Impedância dos Transformadores;
- Impedâncias dos Motores e Geradores;
- Impedâncias dos Cabos e Barramento.

Portanto, o primeiro passo para a realização dos cálculos das correntes de curto-circuito é transformar a instalação em seu equivalente em impedâncias, o qual pode ser obtido através do diagrama unifilar da instalação.

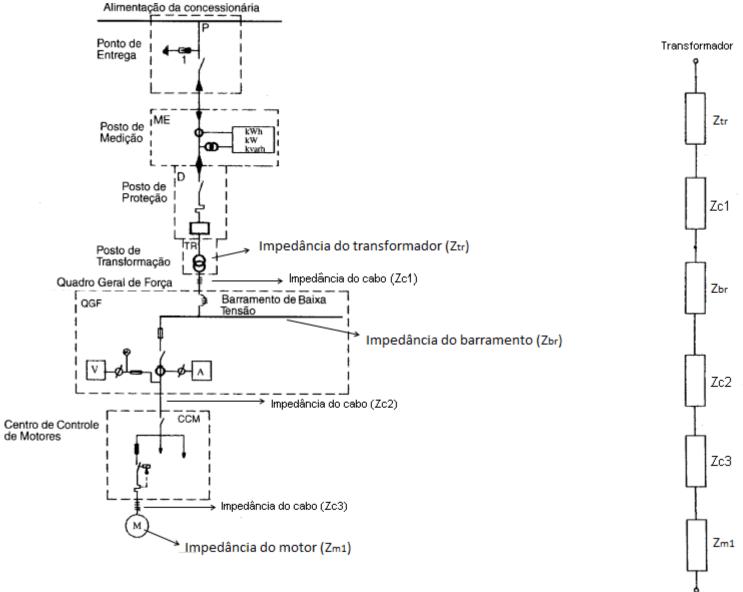


Diagrama Unifilar

Equivalente em Impedâncias

Impedância dos Componentes

- Transformadores

Potência	Tensão	Perdas	s em W	Rendimento	Regulação	Impedância
kVA	v	A vazio	Cobre	(%)	(%)	(%)
15	220 a 440	120	300	96,24	3,32	3,5
30	220 a 440	200	570	96,85	3,29	3,5
45	220 a 440	260	750	97,09	3,19	3,5
75	220 a 440	390	1.200	97,32	3,15	3,5
112,5	220 a 440	520	1.650	97,51	3,09	3,5
150	220 a 440	640	2.050	97,68	3,02	3,5
225	380 ou 440	900	2.800	97,96	3,63	4,5
300	220	1.120	3.900	97,96	3,66	4,5
	380 ou 440		3.700	98,04	3,61	4,5
500	220	1.700	6.400	98,02	3,65	4,5
	380 ou 440		6.000	98,11	3,6	4,5
750	220	2.000	10.000	98,04	4,32	5,5
1	380 ou 440		8.500	98,28	4,2	5,5
1.000	220	3.000	12.500	98,10	4,27	5,5
1.000	380 ou 440		11.000	98,28	4,19	5,5
1.500	220	4.000	18.000	98,20	4,24	5,5
1.500	380 ou 440		16.000	98,36	4,16	5,5

$$Z = Z_{\%} x \frac{(Vn)^2}{S_n x 100}$$
 $R = R_{\%} x \frac{(Vn)^2}{S_n x 100}$ $X = \sqrt{Z^2 - R^2}$ $R_{\%} = \frac{P_W}{10 x S_n}$

Onde,

Vn - tensão nominal de linha

Sn - potência aparente nominal

Pw - perdas no cobre (enrolamento do trafo)

- Cabos

Seção	Impedância de seqüência positiva (mOhm/m)			
	Resistência	Reatância		
1,5	14,8137	0,1378		
2,5	8,8882	0,1345		
4	5,5518	0,1279		
6	3,7035	0,1225		
10	2,2221	0,1207		
16	1,3899	0,1173		
25	0,8891	0,1164		
35	0,6353	0,1128		
50	0,4450	0,1127		
70	0,3184	0,1096		
95	0,2352	0,1090		
120	0,1868	0,1076		
150	0,1502	0,1074		
185	0,1226	0,1073		
240	0,0958	0,1070		
300	0,0781	0,1068		
400	0,0608	0,1058		
500	0,0507	0,1051		
630	0,0292	0,1042		

$$R = \frac{\rho . L}{A.n} . 10^3$$

 ρ - resistividade do cobre $0.017778 \,\Omega \text{mm}^2/m$

L - comprimento do cabo em m

A - área da seção transversal do cabo

n - número de condutores por fase

$$X = X_t \cdot \frac{L}{n}$$

 X_t - 0,096 m Ω /m para cabos

- Barramentos de Cobre

Dimensões		Corrente	Resistência	Reatância
Polegadas	Milímetros	(A)	mOhm/m	mOhm/m
1/2 × 1/16	12,7 × 1,59	96	0,8843	0,2430
$3/4 \times 1/16$	19,0 × 1,59	128	0,8591	0,2300
$1 \times 1/16$	25,4 × 1,59	176	0,4421	0,2280
1/2 × 1/18	12,7 × 1,59	144	0,4421	0,2430
3/4 × 1/8	19,0 × 3,18	208	0,2955	0,2330
1 × 1/8	25,4 × 3,18	250	0,2210	0,2070
1 1/2 × 1/8	$38,1 \times 3,18$	370	0,1474	0,1880
$1 \times 3/16$	25,4 × 4,77	340	0,1474	0,2100
1 1/2 × 3/16	38,1 × 4,77	460	0,0982	0,1880
$2 \times 3/16$	50,8 × 4,77	595	0,0736	0,1700
1 × 1/4	$25,4 \times 6,35$	400	0,1110	0,2100
1 1/2 × 1/4	$38,1 \times 6,35$	544	0,0738	0,1870
2 × 1/4	50,8 × 6,35	700	0,0553	0,1670
2 1/2 × 1/4	63,5 × 6,35	850	0,0442	0,1550
2 3/4 × 1/4	$70,2 \times 6,35$	1,000	0,0400	0,1510
3 1/2 × 1/4	88,9 × 6,35	1.130	0,0316	0,1450
$4 \times 1/4$	$101,6 \times 6,35$	1.250	0,0276	0,1320
$1 \times 1/2$	25,4 × 12,70	600	0,0553	0,1870
2 × 1/2	$50,8 \times 12,70$	1.010	0,0276	0,1630
3 × 1/2	$76,2 \times 12,70$	1.425	0,0184	0,1450
4 × 1/2	101,6 × 12,77	1.810	0,0138	0,1300

http://portuguese.alibaba.com

$$R = \frac{\rho . L}{A.n} . 10^3$$

$$X = X_b.L$$

$$X_b - 0.144 \,\mathrm{m}\Omega/\mathrm{m}$$

SEQUÊNCIA DE CÁLCULOS

- CORRENTE DE CURTO-CIRCUITO TRIFÁSICO SIMÉTRICA (Ics)

$$I_{cs} = \frac{V_n}{\sqrt{3}xZ}$$

- CORRENTE DE CURTO-CIRCUITO TRIFÁSICO ASSIMÉTRICA (Ica)

$$I_{ca} = F_a x I_{cs}$$
 $F_a = \sqrt{1 + 2e^{-(2t/C_t)}}$ $C_t = \frac{X}{377xR}$

- IMPULSO DA CORRENTE DE CURTO-CIRCUITO (Icim)

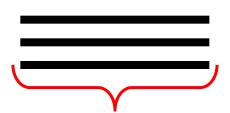
$$I_{cim} = \sqrt{2}xI_{ca}$$

- CORRENTE BIFÁSICA DE CURTO-CIRCUITO (Icb)

$$I_{cb} = \frac{\sqrt{3}}{2} x I_{cs}$$

- Transformador

Se for desconsiderada a resistência do enrolamento, então:


$$I_{cs} = \frac{I_n}{Z_{oa}} x100$$

EXEMPLO

150kVA 13,8kV/380V

Z% =3,5 e Pw=2050W

1x120mm2/faseComprimento de 12mR=0,1868m Ω/m

 $X=0,1076m\Omega/m$

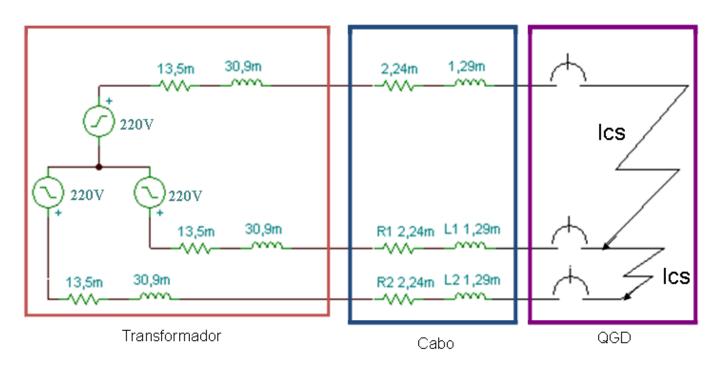
QGD

-Transformador

$$Z = Z_{\%} \cdot \frac{V_n^2}{S_n x_{100}} = 3.5 \cdot \frac{380^2}{150 x_{100}} = 33.7 m\Omega$$

$$R_{\%} = \frac{P_W}{10xS_n} = \frac{2050}{10x150} = 1,4\%$$

$$R = R_{\%} \cdot \frac{V_n^2}{S_n x_1 00} = 1, 4 \cdot \frac{380^2}{150 x_1 00} = 13,5 m\Omega$$


$$X = \sqrt{Z^2 - R^2} = \sqrt{(33,7)^2 - (13,5)^2} = 30,9m\Omega$$

- Cabo

$$R_c = RxL = 0.1868x12 = 2.24m\Omega$$

$$X_c = X.L = 0.1076x12 = 1.29m\Omega$$

CIRCUITO EQUIVALENTE

A impedância equivalente, por fase, vista no ponto de falta, será:

$$R_{eq} = 13.5m + 2.24m = 15.7m\Omega$$

 $X_{eq} = 30.9m + 1.29m = 31.2m\Omega$
 $Z_{eq} = 15.7 + j31.2 (m\Omega) = 34.9 \angle 63.3^{\circ} \text{ (m}\Omega)$

CÁLCULO DAS CORRENTES

- I_{cs}

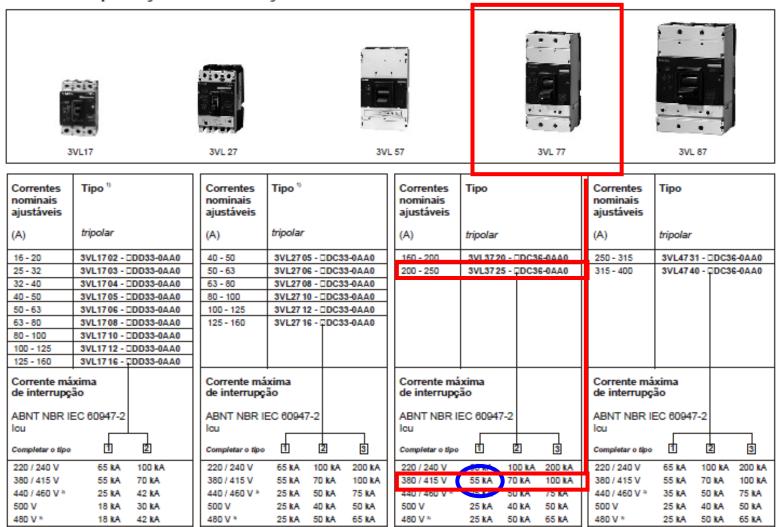
$$I_{cs} = \frac{V_n}{\sqrt{3}xZ}$$
 $I_{cs} = \frac{380}{\sqrt{3}x34.9} = 6.3kA$

- I_{ca}

$$C_{t} = \frac{X}{377xR} = \frac{31,2x10^{-3}}{377x15,7x10^{-3}} = 5,3ms \qquad F_{a} = \sqrt{1 + 2e^{-\frac{(2t/C_{t})}{5}}} = \sqrt{1 + 2e^{\frac{-2x4,16m}{5,3m}}} = 1,2$$

$$I_{ca} = F_a x I_{cs} = 1,2x6,3x10^3 = 7,6kA$$

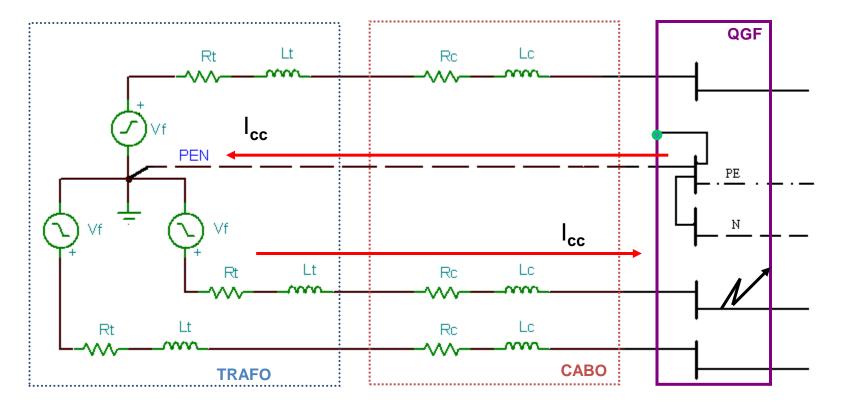
- I_{cim}


$$I_{cim} = \sqrt{2}xI_{ca} = \sqrt{2}x7,6kA = 10,7kA$$

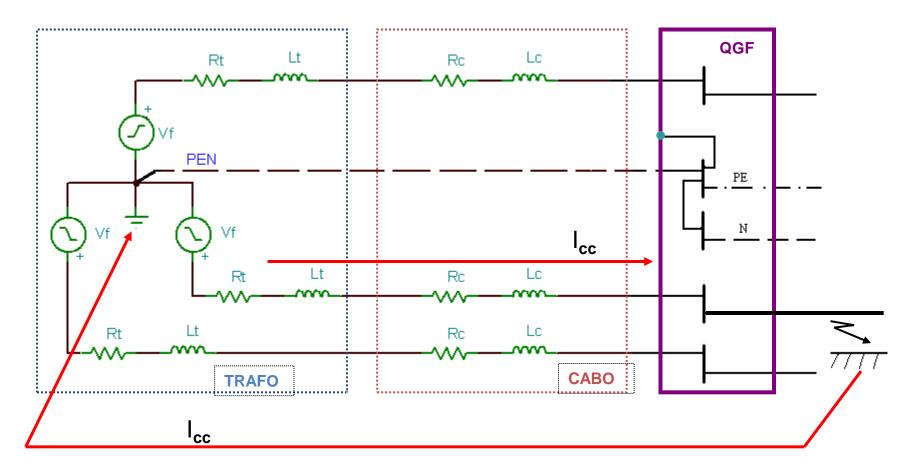
$$I_{cb} = \frac{\sqrt{3}}{2} x I_{cs} = \frac{\sqrt{3}}{2} x 6,3x 10^3 = 5,4kA$$

DIMENSIONAMENTO DO DISJUNTOR

Disjuntores 3VL


Manobra e proteção em instalações elétricas industriais

CORRENTE FASE-TERRA DE CURTO-CIRCUITO


A corrente fase-terra de curto-circuito pode ocorrer de dois modos distintos:

a) Contato da Fase com o Condutor de Proteção ("TERRA")

Neste caso, a limitação da corrente de curto se dará tão somente devido às impedâncias do transformador e do cabo, ou seja, percurso puramente metálico, o que acarreta na menor impedância e na maior corrente.

b) Contato da Fase é feita através do contato com o SOLO

Neste caso, a limitação de corrente se dará pela impedância do percurso constituído pela impedância do trafo, do cabo, do contato cabo/solo, do solo e da malha de aterramento, ou seja, tem-se máxima impedância e mínima corrente.

Cálculo da Corrente de Curto-Circuito Fase-Terra Máxima

$$I_{cftmax} = \frac{3xI_b}{2xZ_{totpu} + Z_{tr0pu} + \sum Z_{cb0pu}} \qquad I_b = \frac{P_b}{\sqrt{3}xV_b} \qquad Z_b = \frac{1000xV_b^2}{P_b}$$

Onde,

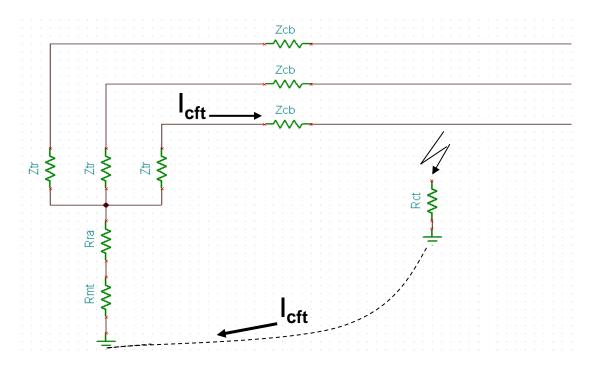
 $I_b \Rightarrow$ Corrente de base $P_b \Rightarrow$ Potência de base

 $V_b \Rightarrow$ Tensão de base $Z_b \Rightarrow$ Impedância de base

 $Z_{tot} \Rightarrow$ Impedância total desde o trafo até o ponto de falta (pu)

 Z_{tr0} \Rightarrow Impedância de sequência zero do trafo que é igual a impedância de sequência positiva (pu)

 Z_{cb0} \Rightarrow Impedância de sequência zero dos cabos desde o trafo até o ponto de falta (pu)


A impedância de sequência zero dos cabos deve ser calculada, em *pu*, por:

$$Z_{cb0} = R_{cb0} + jX_{cb0}$$
 $R_{cb0} = R_{cb\Omega}/Z_b$ $X_{cb0} = X_{cb\Omega}/Z_b$

Resistência e reatância dos condutores de PVC/70° C (valores médios)

Seção		e seqüência positiva Ohm/m)	Impedância de seqüência zero (mOhm/m)		
	Resistência	Reatância	Resistência	Reatância	
1,5	14,8137	0,1378	16,6137	2,9262	
2,5	8,8882	0,1345	10,6882	2,8755	
4	5,5518	0,1279	7,3552	2,8349	
6	3,7035	0,1225	5,5035	2,8000	
10	2,2221	0,1207	4,0222	2,7639	
16	1,3899	0,1173	3,1890	2,7173	
25	0,8891	0,1164	2,6891	2,6692	
35	0,6353	0,1128	2,4355	2,6382	
50	0,4450	0,1127	2,2450	2,5991	
70	0,3184	0,1096	2,1184	2,5681	
95	0,2352	0,1090	2,0352	2,5325	
120	0,1868	0,1076	1,9868	2,5104	
150	0,1502	0,1074	1,9502	2,4843	
185	0,1226	0,1073	1,9226	2,4594	
240	0,0958	0,1070	1,8958	2,4312	
300	0,0781	0,1068	1,8781	2,4067	
400	0,0608	0,1058	1,8608	2,3757	
500	0,0507	0,1051	1,8550	2,3491	
630	0,0292	0,1042	1,8376	2,3001	

Cálculo da Corrente de Curto-Circuito Fase-Terra Mínima

$$I_{cftmin} = \frac{3xI_b}{2xZ_{totpu} + Z_{tr0pu} + \sum Z_{cb0pu} + 3x(R_{ctpu} + R_{mtpu} + R_{rapu})}$$

Resistência de Contato Cabo-Solo

$$R_{ct} = R_{ct\Omega}/Z_b$$

$$R_{ct} = R_{ct\Omega}/Z_b$$
 $R_{ct\Omega} = \frac{40}{3}\Omega$

Resistência da Malha de Aterramento

$$R_{mt} = R_{mt\Omega}/Z_b$$
 $R_{mt\Omega} = 10\Omega$

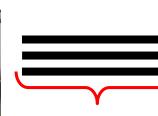
$$R_{mt\Omega} = 10\Omega$$

Resistor de Aterramento

 $R_{ra} = R_{ra\Omega}/Z_b$, valor a calcular em sistemas IT

EXEMPLO

1000KVA 13,8kV/380V


Z% 5,5 e Pw=11KW

 $4x300mm^2$ /fase Comprimento de 15m R=0,0781mΩ/m X=0,1068mΩ/m R₀=1,8781mΩ/m X₀=2,4067mΩ/m

QGD 2 barras 2"x1/2" /fase Comprimento de 5m R=0,0273m Ω /m X=0,1630m Ω /m

1x120mm²/fase Comprimento de 130m R=0,1868m Ω /m X=0,1076m Ω /m R₀=1,9868m Ω /m X₀=2,5104m Ω /m

CCM

-Transformador

$$Z = Z_{\%} \cdot \frac{V_n^2}{S_n x 100} = 5, 5 \cdot \frac{380^2}{1000 x 100} = 7,94 m\Omega$$

$$R_{\%} = \frac{P_W}{10xS_n} = \frac{11000}{10x1000} = 1,1\%$$

$$R = R_{\%} \cdot \frac{V_n^2}{S_n x_1 00} = 1, 1 \cdot \frac{380^2}{1000 x_1 00} = 1,6 m\Omega$$

$$X = \sqrt{Z^2 - R^2} = \sqrt{(7.94)^2 - (1.6)^2} = 7.8m\Omega$$

- Cabo 300mm²

$$R_{c1} = RxL = \frac{0,0781x15}{4} = 0,29m\Omega$$

$$X_{c1} = X.L = \frac{0,1068x15}{4} = 0,4m\Omega$$

$$R_{c10} = RxL = \frac{1,8781x15}{4} = 7,04m\Omega$$

$$X_{c10} = X.L = \frac{2,4067x15}{4} = 9,03m\Omega$$

- Barramento do QGD

$$R_{b1} = \frac{R.L}{N_b} = \frac{0,0276x5}{2} = 0,07m\Omega$$

$$X_{b1} = X.L = \frac{0,1630x5}{2} = 0,41m\Omega$$

- Impedância Total

$$R_{c2} = RxL = 0.1868x130 = 24.28m\Omega$$

$$X_{c2} = X.L = 0.1076x130 = 14.0m\Omega$$

$$R_{c20} = RxL = 1,9868x130 = 258,3m\Omega$$

$$X_{c20} = X.L = 2,5104x130 = 326,4m\Omega$$

$$Z_{tot} = Z_{tr} + Z_{c1} + Z_{b1} + Z_{c2} = 1.6 + 0.29 + 0.07 + 24.28 + j(7.8 + 0.4 + 0.41 + 14)$$

$$Z_{tot} = 26.24 + j22.61 \, m\Omega$$

- Impedância Total de sequência zero dos cabos

$$\sum Z_{cb0} = Z_{c10} + Z_{c20} = 7,04 + 258,3 + j(9,03 + 326,4) = 265,34 + j335,43 \ m\Omega$$

- Valores Base

$$I_b = \frac{P_b}{\sqrt{3}xV_b} = \frac{1000}{\sqrt{3}x0,38} = 1.519A \qquad Z_b = \frac{1000xV_b^2}{P_b} = \frac{1000x(0,38)^2}{1000} = 0,1444\Omega$$

- Impedâncias em pu

$$Z_{totpu} = \frac{0,02624 + j0,02258}{0.1444} = 0,1817 + j0,1564 pu$$

$$\sum Z_{cbopu} = \frac{0,26534 + j0,33543}{0,1444} = 1,8375 + j2,3229 pu$$

$$Z_{tr0pu} = \frac{z_{tr}}{Z_b} = \frac{0,0016 + j0,0078}{0,1444} = 0,0111 + j0,0540 pu$$

$$R_{ctpu} = \frac{R_{ct\Omega}}{Z_b} = \frac{40/3}{0,1444} = 92,34pu$$

$$R_{mtpu} = \frac{R_{mt\Omega}}{Z_h} = \frac{10}{0.1444} = 69,25pu$$

 R_{atpu} apenas para sistemas IT

Corrente de Curto-Circuito Fase-Terra Máxima

$$I_{cftmax} = \frac{3xI_b}{2xZ_{totpu} + Z_{tr0pu} + \sum Z_{cb0pu}}$$

$$I_{cftmax} = \frac{3x1519}{0,3634 + j0,3128 + 1,8375 + j2,3229 + 0,0111 + j0,054} = 1,31kA$$

Corrente de Curto-Circuito Fase-Terra Mínima

$$I_{cftmin} = \frac{3xI_b}{2xZ_{totpu} + Z_{tr0pu} + \sum Z_{cb0pu} + 3x(R_{ctpu} + R_{mtpu} + R_{rapu})}$$

$$I_{cftmin} = \frac{3x1519}{2,212 + j2,6897 + 3x(92,34 + 69,25 + 0)} = 9,4A$$