
UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC

CENTRO DE CIÊNCIAS TECNOLÓGICAS - CCT

DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEE

RENAN SEBEM

DISTRIBUTED CONTROL OF CONNECTED AND AUTOMATED VEHICLES: A

DISCRETE EVENT SYSTEMS APPROACH

JOINVILLE

2022

3

RENAN SEBEM

DISTRIBUTED CONTROL OF CONNECTED AND AUTOMATED VEHICLES: A

DISCRETE EVENT SYSTEMS APPROACH

Tese apresentada como requisito parcial
para obtenção do título de Doutor em En-
genharia Elétrica pelo Programa de Pós-
Graduação em Engenharia Elétrica do
Centro de Ciências Tecnológicas - CCT, da
Universidade do Estado de Santa Catarina
- Udesc.
Orientador: André Bittencourt Leal
Coorientador: Douglas Wildgrube Bertol

JOINVILLE

2022

4

Ficha catalográfica elaborada pelo programa de geração automática da

Biblioteca Setorial do CCT/UDESC,

 com os dados fornecidos pelo(a) autor(a)

Sebem, Renan
 Distributed Control of Connected and Automated Vehicles
:
a Discrete Event Systems Approach / Renan Sebem. -- 2022.
 115 p.

 Orientador: André Bittencourt Leal
 Coorientador: Douglas Wildgrube Bertol
 Tese (doutorado) -- Universidade do Estado de Santa
Catarina, Centro de Ciências Tecnológicas, Programa de
Pós-Graduação em Engenharia Elétrica, Joinville, 2022.

 1. Multiple Connected and Automated Vehicles. 2.
Distributed and Scalable Control. 3. Reconfigurable Path
Planning. 4. Multiple Intersections Management. 5. Discrete
Event Systems. I. Bittencourt Leal, André. II. Wildgrube Bertol,
Douglas. III. Universidade do Estado de Santa Catarina,
Centro de Ciências Tecnológicas, Programa de
Pós-Graduação em Engenharia Elétrica. IV. Titulo.

5

RENAN SEBEM

DISTRIBUTED CONTROL OF CONNECTED AND AUTOMATED VEHICLES: A

DISCRETE EVENT SYSTEMS APPROACH

Tese apresentada como requisito parcial
para obtenção do título de Doutor em En-
genharia Elétrica pelo Programa de Pós-
Graduação em Engenharia Elétrica do
Centro de Ciências Tecnológicas - CCT, da
Universidade do Estado de Santa Catarina
- Udesc.
Orientador: André Bittencourt Leal
Coorientador: Douglas Wildgrube Bertol

BANCA EXAMINADORA

Prof. Dr. André Bittencourt Leal
Univ. do Estado de Santa Catarina

Membros:

Profa. Dra. Patrícia Nascimento Pena
Univ. Federal de Minas Gerais

Prof. Dr. Yuri Kaszubowski Lopes
Univ. do Estado de Santa Catarina

Profa. Dra. Patricia Della Méa Plentz
Univ. Federal de Santa Catarina

Prof. Dr. Benjamin Grando Moreira
Univ. Federal de Santa Catarina

Joinville, 19 de julho de 2022.

6

Dedico este trabalho à minha família que

me apoia incondicionalmente nas minhas

escolhas. À minha Esposa Laís, à minha

filha Yasmin e aos meus pais Wilson e Ra-

quel.

7

AGRADECIMENTOS

Em primeiro lugar sou grato pelo dom da vida e suas possibilidades.

Agradeço à minha esposa Laís que me ajudou em vários aspectos, principal-

mente pessoais, durante todo o período de realização desta tese, dedicando seu

tempo para que eu pudesse dedicar tempo ao desenvolvimento da tese. Também

tenho que agradecer a minha filha Yasmin de um ano e 10 meses, que muitas vezes

me ajudou a escrever a tese digitando “asdfghjkl” no teclado. Também agradeço aos

meus pais Wilson e Raquel pois sempre me ajudam em tudo que peço.

Agradeço ao meu orientador André por toda a sua dedicação e compromisso

comigo, com outros orientados e com a pesquisa científica. Ele é uma pessoa ex-

cepcional que acredita no potencial das pessoas e que permite o desenvolvimento do

trabalho com liberdade. E isto é peça fundamental para a pesquisa científica, que

requer criatividade e inovação. Espero ter rendido (e ainda render) frutos à altura da

orientação recebida.

Agradeço ao meu coorientador Douglas, Tchê, pela parceria. As conversas

com mate sempre rendem, seja uma solução ou pelo menos uns bons risos. O Tchê

também é uma pessoa excepcional que contribuiu muito com o meu desenvolvimento

na pesquisa. Seu semblante sempre descontraído e despreocupado parece até fácil

de se conseguir.

Agradeço aos meus colegas de laboratório Maurício e Matheus, dos quais fui

coorientador de seus trabalhos de conclusão de curso. Trabalhos estes que foram

propostas provenientes desta tese. Agradeço pela confiança e principalmente por

todo esforço dedicado à nossa colaboração.

Agradeço ao grupo estudantil GERM, pelo empréstimo dos robôs utilizados nos

experimentos desta tese.

Agradeço à Georgia Tech College of Engineering pelo desenvolvimento, manu-

tenção e disponibilização do Robotarium.

Agradeço a CAPES e ao FUMDES pelas bolsas de doutorado concedidas à

mim (em períodos distintos). Agradeço à Fundação de Amparo à Pesquisa e Inovação

do Estado de SC - FAPESC 2021TR930, pelo suporte financeiro investido no grupo

de pesquisa.

Agradeço aos colegas de laboratótio Lucas e Áureo, pelas conversas filosóficas

e elucidantes, pela companhia e amizade.

8

Agradeço à colega (e minha professora na época de graduação) Ana, e ao pro-

fessor Marcelo pela colaboração na escrita de um artigo, que surgiu como um trabalho

na disciplina do Marcelo e rendeu um artigo publicado em periódico internacional qua-

lificado, depois de muito esforço, é claro.

Agradeço ao colega Daniel, pela colaboração na escrita de um artigo base-

ado em sua dissertação de mestrado, que rendeu um artigo publicado em periódico

internacional.

Agradeço aos colegas de laboratório Hebert, Rangel; e aos profesores Celso e

Fabrício, pela companhia e pelas conversas.

Agradeço aos professores e profissionais do PPGEEL e do SECEPG.

9

“Existem apenas dois dias no ano em que

nada pode ser feito. Um é chamado Ontem

e o outro é chamado Amanhã. Hoje é o dia

certo para Amar, Acreditar, Fazer e princi-

palmente Viver."

Dalai Lama

10

RESUMO

Esta tese propõe uma solução para o problema de controle de CAVs em grandes cen-

tros urbanos. A arquitetura de controle para CAVs proposta neste trabalho combina

três características: Distribuída, Escalável e Reconfigurável. O termo Distribuída é

usado no sentido de que o controle está totalmente embarcado nos CAVs, sem um

gestor/coordenador central. O termo Escalável é usado no sentido de que o número

de CAVs pode mudar no tempo de execução. E o termo Reconfigurável é usado no

sentido de que os CAVs podem alterar seus destinos e caminhos a qualquer momento.

Com esta arquitetura, garante-se o comportamento não bloqueante e livre de colisões

do sistema, e também a privacidade do caminho para cada CAV. A estrutura de con-

trole local é composta por uma planta local, um controlador de caminho e um con-

trolador de coordenação, todos modelados por autômatos. A disputa pela ocupação

da via entre os CAVs é tratada para evitar colisões, com base em uma comunicação

sem fio onde cada CAV impõe desabilitações de eventos (ações) aos demais CAVs.

Propõe-se um tratamento online para prevenção de bloqueios, sem a necessidade de

computar um controlador monolítico em nenhuma fase do projeto. Os controladores

de caminho e coordenação são propostos para serem embarcados e sintetizados no

CAV em tempo de execução, o que permite a reconfiguração. A escalabilidade é al-

cançada explorando a similaridade entre as plantas dos CAVs, por meio do uso de um

mapa de reetiquetagem. A arquitetura é validada através de um ambiente de simula-

ção no Robotarium e testes práticos experimentais com robôs Lego Mindstorms. Dois

exemplos são dados, assim como duas simulações e dois experimentos são executa-

dos. Uma das simulações foi executada por 54h, variando o número de CAVs de 1 até

36, e na qual foi encontrado que a arquitetura é mais eficiente em 22,2% da taxa de

ocupação dos CAVs no mapa. Os resultados mostram que todos os requisitos foram

atendidos.

Palavras-chave: Múltiplos Veículos Conectados e Automatizados, Controle Distri-

buído e Escalável, Planejamento de Caminhos Reconfiguráveis, Gerenciamento de

Múltiplas Interseções, Sistemas a Eventos Discretos.

11

ABSTRACT

This thesis proposes a solution to the problem of CAVs control in large urban envi-

ronments. The control architecture for CAVs proposed in this work combines three

features: Distributed, Scalable, and Reconfigurable. The term Distributed is used in

the sense that the control is totally embedded in the CAVs, without a central man-

ager/coordinator. The term Scalable is used in the sense that the number of CAVs

can change in the runtime. And the term Reconfigurable is used in the sense that the

CAVs may change their destinations and paths at any time. This architecture ensures

the system’s nonblocking and collision-free behavior, and the path’s privacy for each

CAV. The local control structure comprises a local plant, a path controller, and a coor-

dination controller, all modeled by automata. The dispute for road occupation between

CAVs is handled to avoid collisions, based on a wireless communication where each

CAV imposes disablings of events (actions) to other CAVs. We propose an online han-

dling for deadlock avoidance, with no need to compute a monolithic controller in any

design phase. The path and coordination controllers are proposed to be embedded

and synthesized in the CAV at runtime, which allows the reconfiguration. The scala-

bility is achieved by exploring the similarity between the CAVs’ plants, through the use

of a relabeling map. The architecture is validated through a simulation environment in

Robotarium and a practical experimental testbed with Lego Mindstorms robots. Two

examples are given, as well as two simulations and two experiments are executed.

One of the simulations was run for 54h, varying from 1 to 36 CAVs, where it was found

that the architecture is most efficient at 22.2% of the CAVs occupation rate on the map.

The results achieved all the proposed objectives for the architecture, showing that it is

not only a new and efficient way to solve the problem of CAVs control, but also provides

the only distributed, scalable and reconfigurable solution for CAVs control.

Keywords: Multiple Connected and Automated Vehicles. Distributed and Scalable

Control. Reconfigurable Path Planning. Multiple Intersections Management. Discrete

Event Systems.

12

LIST OF FIGURES

FIGURE 1 – State evolution of a Discrete Event System (DES) in time. 12

FIGURE 2 – Example of deterministic finite-state automaton. 15

FIGURE 3 – Blocking automata with: (a) deadlock in state 2 and (b) livelock

between states 2 and 3. 17

FIGURE 4 – Automata G1 and G2. 18

FIGURE 5 – Composition of automata G1 and G2. 19

FIGURE 6 – Automaton representation of a door functioning. 20

FIGURE 7 – Controllable event representation in a finite state automaton. 20

FIGURE 8 – Monolithic control architecture of DES in closed-loop. 22

FIGURE 9 – Local modular control architecture of DES in closed-loop. 24

FIGURE 10 – Disposal of the models in a local modular architecture. 25

FIGURE 11 – Composition of colored marking generators: (a) G1, (b) G2, and (c)

G1∥2 = G1∥G2. 27

FIGURE 12 – Multitasking with colored marking control architecture of DES in

closed-loop. 27

FIGURE 13 – Maze and Colored Marking Automaton (CMA) models. 28

FIGURE 14 – CMA supervisor solution for the maze problem. 28

FIGURE 15 – Illustration of a multi-agent system. 46

FIGURE 16 – Components of an agent. 47

FIGURE 17 – Bubble chart, where the characteristics of the works found in the

literature are summarized. 57

FIGURE 18 – Examples of (a) circular accessible automaton F and (b) non-circular

accessible automaton H. 63

FIGURE 19 – Illustration of automata of Reconfigurable Multitasking Discrete Event

System (RMTDES) system F, formed by F1 = R1(F) and F2 =

R2(F). Three different instants of time are shown: (a) time t1 = 0;

(b) time t2 > t1; and (c) time t3 > t2. 64

FIGURE 20 – Control structure for a multi-CAV system. 65

FIGURE 21 – Flowchart of a CAV’s internal operation. 67

13

FIGURE 22 – Illustration of real (blue) and logical (red) states. 76

FIGURE 23 – Map for the examples: (a) design and (b) Root Graph model. . . . 79

FIGURE 24 – Initial models for Example 1. 80

FIGURE 25 – Recomputed models after reconfiguration in Example 1. 81

FIGURE 26 – Initial models for Example 2. 82

FIGURE 27 – Recomputed models after a momentary blocking in Example 2. . . 83

FIGURE 28 – Environment setup for Simulation 1. 85

FIGURE 29 – The total completed paths of all CAVs vs. the number of CAVs. . . 86

FIGURE 30 – The average completed paths by each CAV vs. the number of CAVs. 87

FIGURE 31 – The average distance traveled by CAV by path vs. the number of

CAVs. 87

FIGURE 32 – Experimental infrastructure with Lego Mindstorm robots. 88

FIGURE 33 – Setup for experiment 1. 89

FIGURE 34 – Map for the examples: (a) design and (b) Root Graph model. . . . 92

FIGURE 35 – Illustration of the communication (gray) and reserving (red) ranges. 94

14

LIST OF TABLES

TABLE 1 – Correlation between features that can be improved vs. technical

requirements in Connected and Automated Vehicle (CAV)s traffic. 6

TABLE 2 – Information on the first search for works in the literature. 35

TABLE 3 – Comparison of solutions in the first search, regarding the three

features: Distributed, Scalable, and Reconfigurable 38

TABLE 4 – Information on the second search for works in the literature. . . . 39

TABLE 5 – Comparison of solutions in the second search, regarding the three

features: Distributed, Scalable, and Reconfigurable 43

TABLE 6 – Comparison of solutions in the literature, regarding three features:

Distributed, Scalable, and Reconfigurable 44

TABLE 7 – Summary of characteristics of multi-agent systems. 48

TABLE 8 – Information on the process of searching for works in the literature. 50

TABLE 9 – Comparison of solutions on control of DES, regarding the four

characteristics: Structure, Scalable, Reconfigurable and Interaction 58

TABLE 10 – Comparison of the solutions proposed in this thesis and by Dulce-

Galindo et al. (2022). 59

TABLE 11 – Comparison of the ideal distance and the executed distance in

Experiment 1. 90

TABLE 12 – Comparison of the ideal distance and the executed distance in

Experiment 2. 91

15

LIST OF THEOREMS

1 Definition (Discrete Event System) . 11

2 Definition (Blocking) . 16

3 Definition (Control Action) . 21

4 Definition (Controlability) . 21

5 Definition (Supervisor) . 22

6 Definition (Controller) . 22

7 Definition (Multi-agent System) . 46

8 Definition (Agent) . 47

9 Definition (Circular Accessible State) . 62

10 Definition (Circular Accessible Automaton) 62

11 Definition (RMTDES) . 63

12 Definition (Momentary Blocking) . 66

13 Definition (Shortest Path Language) . 71

1 Theorem (Number of CAVs) . 73

16

ALGORITHMS LIST

1 Computation of Ki. 70

2 Computation of Cpai. 71

3 Computation of Ccoi. 73

4 Computation of Cpai with uncontrollable events. 93

17

LIST OF ABBREVIATIONS

CAV Connected and Automated Vehicle

CMA Colored Marking Automaton

DES Discrete Event System

HDV Human-Driven Vehicle

IoT Internet of Things

MPC Model Predictive Control

MTDES Multitasking Discrete Event System

RMTDES Reconfigurable Multitasking Discrete Event System

SCT Supervisory Control Theory

V2I Vehicle to Infrastructure communication

V2V Vehicle to Vehicle communication

V2X Vehicle to Vehicle and Vehicle to Infrastructure communication

18

SYMBOLS LIST

RG Root generator

Cpai Path controller automaton of cavi

Ccoi Coordination controller automaton of cavi

Cco Coordination controller automaton

Cco1 Coordination controller automaton of cav1

Cco2 Coordination controller automaton of cav2

Cpa1 Path controller automaton of cav1

Cpa2 Path controller automaton of cav2

G Plant model automaton

S Supervisor automaton

K Control specification automaton

E Control specification automaton

Gi Local plant model of cavi

Ki Specification automaton for the path controller of cavi

K2 Specification automaton for the path controller of cav2

Spai Path supervisor automaton of cavi

i, j, k CAV’s indexes

cavi Variable to identify the ith CAV

cav1 Variable to identify the first CAV

cav2 Variable to identify the second CAV

Σ Finite set of events

Σ′
i Enabled event set for cavi

Σi Event set of cavi plant model

Σco1 Event set for the coordination controller of cav1

Σcoi Event set for the coordination controller of cav1

Di↓ Set of disabled events received by cavi

Di↑ Set of disabled events sent by cavi

D1↑ Set of disabled events sent by cav1

D2↓ Set of disabled events received by cav2

19

D2↑ Set of disabled events sent by cav2

δ Transition function

Γ Active event function

L(G) Language of automaton G

Lm(G) Marked language of automaton G

Ri Relabeling map to i

Q State set

q0 Initial state

Qm Marked states set

C Set of colors in a colored marking generator

χ Marking function in a colored marking generator

ε Empty string

20

CONTENTS

1 INTRODUCTION . 1

1.1 MULTI-AGENT ASPECT OF CAVS SYSTEMS 3

1.2 SUPERVISORY CONTROL FOR CAVS SYSTEMS 4

1.3 MOTIVATION . 5

1.4 PROBLEM STATEMENT AND SCOPE 7

1.5 OBJECTIVES . 8

1.6 CONTRIBUTIONS AND ORGANIZATION OF THE DOCUMENT 9

2 DISCRETE EVENT SYSTEMS AND SUPERVISORY CONTROL 11

2.1 LANGUAGES & AUTOMATA: DES MODELING FORMALISMS 12

2.1.1 Languages . 12

2.1.2 Finite State Deterministic Automata . 14

2.1.2.1 Accessible Part of an Automaton . 15

2.1.2.2 Coaccessible Part of an Automaton . 16

2.1.2.3 Trim Component of an Automaton . 16

2.1.2.4 Blocking and Nonblocking . 16

2.1.2.5 Synchronous Composition . 17

2.1.3 Representation of DES by Languages and Automata 19

2.2 SUPERVISORY CONTROL OF DES . 19

2.2.1 Controller vs. Supervisor . 21

2.2.2 Centralized or Monolithic Control . 22

2.2.3 Distributed Control of DES . 23

2.2.3.1 Local Modular Control . 24

2.2.4 Multitasking Control . 25

2.2.4.1 Example of Supervisory Control of MTDES 27

2.2.5 Computation of the Supervisor . 29

2.3 DISCUSSION . 30

3 RELATED WORKS ON CONTROL OF CAVS 31

3.1 CONCEPTS AND TERMINOLOGY . 31

3.1.1 Cruise Control . 31

3.1.2 Platooning . 32

21

3.1.3 Lane Changing . 32

3.1.4 Road Merging . 32

3.1.5 Roundabouts . 32

3.1.6 Intersections Management . 33

3.1.7 Path Planning . 33

3.1.8 Communication Topology . 33

3.2 METHODOLOGY FOR THE SEARCH OF PAPERS IN THE LITERATURE 34

3.3 FIRST SEARCH FOR PAPERS . 34

3.3.1 Analysis on the Papers Found in the First Search 34

3.4 SECOND SEARCH FOR PAPERS . 38

3.4.1 Analysis on the Papers Found in the Second Search 39

3.5 OTHER SEARCHES . 42

3.6 DISCUSSION . 43

4 RELATED WORKS ON SUPERVISORY CONTROL OF MULTI-AGENT

DES . 45

4.1 MULTI-AGENT SYSTEMS . 45

4.2 METHODOLOGY FOR THE SEARCH FOR PAPERS IN THE LITERATURE 48

4.3 ANALYSIS ON THE PAPERS FOUND IN THE SEARCH 50

4.4 DISCUSSION . 56

5 CONTROL ARCHITECTURE . 60

5.1 PRELIMINARIES . 60

5.2 CONTROL ARCHITECTURE . 64

5.2.1 Reconfigurable Structure . 66

5.2.2 Path Controller Specification . 69

5.2.3 Path Controller . 70

5.2.4 Coordination Controller . 72

5.2.5 Conditions for the Solution . 73

5.3 ABSTRACTING THE SPEED OF CAVS IN IMPLEMENTATION 75

6 SIMULATIONS AND EXPERIMENTS OF THE PROPOSED ARCHITEC-

TURE . 78

6.1 EXAMPLES . 78

6.1.1 Example 1 . 79

22

6.1.2 Example 2 . 82

6.2 SIMULATION RESULTS . 84

6.2.1 Simulation 1 . 84

6.2.2 Simulation 2 . 85

6.3 EXPERIMENTAL RESULTS . 87

6.3.1 Experiment 1 . 88

6.3.2 Experiment 2 . 89

7 DISCUSSION . 92

7.1 CONSIDERING UNCONTROLLABLE BEHAVIOR 92

7.2 CONSIDERING RESTRICTED MODELS FOR GI 93

7.3 RESERVING A PATH FOR SPECIAL VEHICLES 93

7.4 COMMUNICATION TECHNOLOGIES FOR CAVS 94

8 CONCLUSION . 95

8.1 PUBLICATIONS AND SUPERVISIONS 96

8.1.1 Papers in the Context of this Thesis 96

8.1.2 Collaborations within the Research Group 97

8.1.3 Supervisions . 98

REFERENCES . 99

23

1

1 INTRODUCTION

This work aims at the problem of automated vehicles replacing Human-Driven

Vehicles (HDVs). Recent advances in technology support the possibility of this replace-

ment. In this sense, Fully Automated Autonomous Vehicles (AAVs) have improved

safety, efficiency, and convenience in the driving experience in comparison to HDVs.

These advantages may be improved even further with the exchange of traffic informa-

tion between vehicles. This kind of vehicle is often referred to as Connected and Au-

tomated Vehicles (CAVs) (PARENT, 2013). One advantage of CAVs over AAVs is that

the exchanged information can be used to coordinate CAV’s movements to reduce or

even extinguish the need for stopping at intersections. Also, another advantage is that

the path planning of a CAV may consider the information of the traffic, and therefore

improve efficiency. From another perspective, CAVs may be connected to signalized

intersections, making street crossings safer for pedestrians.

Research in Connected and Automated Vehicles (CAVs) is a recent topic, and it

is rapidly growing as the technology allows to foresee its application in a global scale, in

a not-so-distant reality. The reason of this growth is based on three main motivations:

safety, efficiency and convenience (GUANETTI; KIM; BORRELLI, 2018). Comparing

CAVs with HDVs, it is easily noted that the CAVs receive information of the traffic be-

yond human capability. Thus, CAVs can provide better safety, considering that human

errors are the greater cause of accidents in traffic. Also, CAVs control may reach better

efficiency in many ways, such as fuel and time economy, due to optimal control of dy-

namics and optimal trajectory planning. Finally, it is clearly more convenient allowing

humans to safely “fall asleep at the wheel”. However, the CAV’s control architecture

must be designed to achieve these improvements, which is the subject of this work.

One aspect of the CAV’s control is the structure, which may be classified as

centralized (GUAN et al., 2020), decentralized (XIAO; CASSANDRAS, 2019; ZHANG;

CASSANDRAS, 2019), or distributed (MIRHELI et al., 2019; LIU et al., 2018; ROS-

ZKOWSKA; REVELIOTIS, 2013). In the centralized structure, all decisions are made

by a central processing system, which may be unfeasible depending on the number

of CAVs. In the decentralized structure, some of the decisions may be taken locally

and some decisions are made by a coordinator; this approach improves the feasibility

24

2

for a large number of CAVs, but there is still a need for a coordinator (or decentralized

coordinators), which has some disadvantages such as the cost and maintenance of it.

In the distributed structure, all decisions are taken locally without the need for a coor-

dinator, however, the complexity of the control system is increased. In this work, the

term Distributed is used in the sense that the control is totally embedded in the CAVs,

without a central manager/coordinator. In the literature, the term “in-vehicle control” is

used.

Another problem in the control of CAVs is how to adapt the control system when

the specification is changed at runtime. In other words, this problem deal with the

recomputation of the control when the destination, or the path of the CAV is changed.

Most methods in the literature consider that the control specification is fixed and cannot

change at runtime (QUEIROZ, 2000, 2004; CAI; WONHAM, 2010; GUO; LI; BAN,

2019; GUANETTI; KIM; BORRELLI, 2018). That is, a change in the route requires a

manual offline intervention, previous to the runtime. Furthermore, there is a research

field which deals with dynamic path planning of CAVs, however, this kind of research is

focused in the optimization algorithm, instead of the control architecture (JIANG et al.,

2022).

In summary, a change in the system requires a respective change in the models

of the CAVs and their controllers. In most cases, this change must be done offline, i.e.,

with the system turned off. In this work, we study two kinds of change: scalability and

reconfiguration. We use the term Scalable in the sense that the number of CAVs can

change in runtime and the control architecture is able to adapt to this change while in

execution. The term Reconfigurable is used in the sense that the CAVs may change

their paths (or tasks) at runtime, and at any time; and the control architecture is able to

adapt to this change while in execution.

Considering specific problems in the traffic of CAVs, many solutions in differ-

ent situations are currently under research, such as cruise control (MOSER et al.,

2018), intersections management (MIRHELI et al., 2019; ZHANG; CASSANDRAS,

2019; GUAN et al., 2020; KAMAL et al., 2015; STEINMETZ et al., 2018; WANG; ZHAO;

YIN, 2019; CHEN et al., 2020), mission assignment (BASILE; CHIACCHIO; MARINO,

2019), road merging (XIAO; CASSANDRAS, 2019; RIOS-TORRES; MALIKOPOULOS,

2017a; ITO et al., 2019; JING et al., 2019; DING et al., 2020; ZHENG et al., 2020), path

planning (FRANSEN et al., 2020), platooning (CHEN et al., 2020b; GUO et al., 2020),

25

3

roundabouts (DEBADA; GILLET, 2018), warehouse automation (TATSUMOTO et al.,

2018), etc. These approaches require complex solutions and most works present in-

dependent solutions for each problem, and rare are the works that treat more than one

problem with the same solution.

1.1 MULTI-AGENT ASPECT OF CAVS SYSTEMS

The transit of CAVs in large-scale can be seen as a multi-agent system. A

multi-agent system is characterized by the existence of countless independent and au-

tonomous subsystems which can interact with each other, forming a complex system.

A multi-agent system can be defined as a complex system, which can be segregated

into different subsystems, called agents, which perform decisions and actions inde-

pendently of the others. The agents interact in the same environment, thus forming the

multi-agent system. Examples of multi-agent systems are manufacturing plants with in-

dustry 4.0 technology (KOVALENKO; TILBURY; BARTON, 2019); computer networks;

Internet of Things (IoT); the transit of autonomous vehicles; and robot swarms (LOPES

et al., 2016).

An important characteristic of multi-agent systems is the uniformity of the agents.

Agents that perform the same functions are classified as similar or identical, compos-

ing a homogeneous system, i.e., a network formed only by computers is a multi-agent

system with similar agents. This can provide a simplification in the modeling and con-

trolling of systems formed by a large number of agents.

Another important feature is the number of agents. It is interesting that the

number of agents of the system is variable at runtime. This provides flexibility to the

system, for example, it does not need to stop the global system for the maintenance of

an agent.

Other characteristic of multi-agent system regards the tasks of the agents. When

agents execute a part of the work to achieve a global objective, the multi-agent system

is called collaborative. In collaborative systems, generally, the order of task completion

by each agent matters, and in some cases it has to be synchronized. When agents

execute their own task, independent of the tasks of other agents, to achieve a local ob-

jective, the multi-agent system is called competitive. In competitive systems, the order

of tasks completion does not matter, and each agent desires to finish its task first. It

is interesting to note that competitive multi-agent systems is, in another perspective, a

26

4

multitasking system.

In this work, the term “CAVs system” refers to a multi-CAV system, seen from a

perspective of a multi-agent system.

1.2 SUPERVISORY CONTROL FOR CAVS SYSTEMS

In terms of high-level control (i.e., coordination, path planning, road merging,

etc), a multi-CAV system has a discrete state-space and it is adequate to be modeled

as a Discrete Event System (DES). Also, DES modeling and control are well known

in the literature and many structures of control have already been proposed, such as

centralized, decentralized, distributed, and hierarchical; many control solutions have

been implemented in the scope of DES, such as consensus-based and auction-based

(BASILE; CHIACCHIO; MARINO, 2019); scalable control (LIU; CAI; LI, 2019a) and

multitask control (QUEIROZ; CURY; WONHAM, 2005; QUEIROZ; CURY, 2005) has

been also proposed for DESs in independent works. In this work, the structure of

multi-agent systems is combined with modeling through DESs within the scope of Su-

pervisory Control Theory (SCT) (RAMADGE; WONHAM, 1987), in which the control

system is formally verified.

A problem in the distributed control of DES is that the exponential explosion

of states still exists in the design phase (LIU; CAI; LI, 2018; CAI; WONHAM, 2010;

QUEIROZ; CURY, 2000). In works by Liu, Cai and Li (2018, 2019b), the monolithic

supervisor is computed first, and then the localization (CAI; WONHAM, 2010) is per-

formed, that is, the distribution from a global to local supervisors. This localization

method may become unfeasible due to the need of computing the monolithic super-

visor. In the work of Queiroz and Cury (2000), the test of non-conflict is made after

computing the local modular supervisors, and in this design phase the problem of ex-

ponential explosion of states still exists.

However, Liu, Cai and Li (2018, 2019b) exploit the similarities between agents

to avoid the exponential explosion of states, thus calculating a monolithic supervisor

called scalable. Another way to solve this problem is through the online calculation of

the supervisor using the truncated models of the system, that is, periodically only a part

of the supervisor is calculated (CHUNG; LAFORTUNE; LIN, 1993; HADJ-ALOUANE;

LAFORTUNE; LIN, 1996). An example of the application of this technique, related to

the subject of this work, can be found in the work by Tatsumoto et al. (2018). Although

27

5

the exponential explosion of states is addressed in these works, it is important to note

that the control structure is centralized.

Given the distributed nature of multi-agent systems, it is pertinent that the control

of these systems is also distributed. Furthermore, considering an urban traffic of CAVs,

i.e., a large-scale system, it is unfeasible to implement a centralized control structure

(QUEIROZ, 2000).

In a real application, the number of CAVs in CAVs systems can change over

time. That is, a CAV that was idle (or powered off) can start its task at any time, or

a CAV that has finished its task could stay on stand-by. So the control must be able

to adapt each time the number of CAVs is changed, i.e., the control must be scalable

at runtime. In terms of scalability, in the multi-agent control perspective, the similarity

between agents can be explored to reduce the complexity and allow the scaling of

the solution (SU; LIN, 2013; LIU; CAI; LI, 2019a). This kind of solution is feasible

to be applied in CAVs systems, considering CAVs are similar, and depending on the

modeling can be considered identical.

In terms of reconfiguration, the controller (supervisor) model must be computed

at runtime. This way, the algorithms used to compute the controllers models must be

feasible to be embedded in the CAV. We have found some works with reconfigurable

control of DES, and they are presented and compared to the work in this thesis in

Chaper 4.

1.3 MOTIVATION

The CAV’s technology has the potential to improve many aspects in the traffic

of vehicles, such as comfort, safety, time, and energy efficiency. To do so, the control

system must be able to achieve these requirements. In Table 1, a correlation of the

potential improvements in CAVs traffic vs. the technical requirements in the control

system is presented. For example, the technical requirement of collision-free behavior

assured by the control system, results in an improvement on the comfort and safety for

the passenger.

It is very complex to achieve all these technical requirements in one control

scheme. It is clear that through the use of conventional control schemes, these re-

quirements cannot be achieved. Most works in the literature focus on one of these

requirements (see Chapter 3). To the best of the author’s knowledge, it was not found

28

6

Table 1 – Correlation between features that can be improved vs. technical
requirements in CAVs traffic.

Comfort Safety Time
Efficiency

Energy
Efficiency

Collision Free Yes Yes
No stopping at intersections Yes Yes Yes
No traffic jam Yes Yes Yes
Dynamic path planning Yes Yes
Reliable communication Yes
Platooning Yes

Source: designed by the author (2022).

in the literature a control architecture for CAVs which achieves all these requirements.

This is evidence that research on control systems for CAVs is not established and

further research is required.

There are other aspects of the control of CAVs which must be achieved by the

control system to assure that it can be implemented in a very large-scale system.

These aspects can be noted when observing how the traffic of HDV works. Firstly, there

is not a central coordinator sending orders for each human driver, i.e., each human

driver is autonomous on his decisions. However, every driver is subject to common

rules or traffic laws. This rules apply to all drivers and they are made to ensure the

collision-free behavior. This observation have motivated that the coordination of CAVs

should be distributed.

In a second observation, vehicles may become active or inactive at any time,

e.g., in the morning the vehicle is used to travel to the office, then it becomes inactive

all day in the parking lot, then it is used to travel back home at evening. Thus, the

number of active vehicles at the traffic are varying all the time and scalability is a way

to solve this problem.

The third observation is that drivers/passengers may choose a route and change

it at any time. For example, a driver may choose to travel to the restaurant at noon,

but in the middle of the route, the driver observes that the fuel is almost empty, then he

changes his route to the gas station. In terms of control, a reconfiguration at runtime is

needed, i.e., an in-vehicle recomputation of the controller must be feasible.

In a fourth observation the only information traded by HDVs is brake and turn

signals. This means that the only information shared by an HDV is “I am stopping”

and “I am turning” left or right. Otherwise, it is assumed that the HDV is going forward.

29

7

Sharing the path or the destination violates the privacy of the user, and therefore we

propose a communication based on the disabling of actions of other CAVs, which is

sufficient to avoid collisions.

Regarding the modeling formalism, it was observed that most solutions in the

literature are based on continuous state-space modeling. These solutions are most

adequate to the vehicle’s low level control, such as speed control. To the best of the

author’s knowledge, it was noted the lack of solutions of high level control, and in

this case, the discrete event system approach, with a discrete state space, is most

adequate to abstract away part of the dynamics, focusing on the high level of the path

planning.

1.4 PROBLEM STATEMENT AND SCOPE

In this work the problem of controlling multiple CAVs in a shared environment is

solved by proposing a control architecture, in which the requirements in the following

statements are fulfilled:

(S1) The control structure distributed in each CAV assures that two or more CAVs can-

not occupy the same space at the same time, i.e., the control structure assures a

collision-free behavior;

(S2) The control structure distributed in each CAV assures the nonblocking of the

whole system;

(S3) Each CAV computes its own path, optimized independently, considering an avail-

able shortest route;

(S4) CAVs do not share their paths with others;

(S5) The solution is feasible for large-scale systems, avoiding the exponential explo-

sion of states1;

(S6) The number of CAVs may change at runtime (scalable solution);

(S7) Each CAV may change its control specification at runtime, with no need to recom-

pute other CAVs’ control.
1In terms of DES models, the composition of many subsystems causes the exponential explosion of

states w.r.t. the number of subsystems, in which case, a monolithic controller could be unfeasible.

30

8

The proposed solution considers the following assumptions:

(A1) The event sets for each CAV are pairwise disjoint;

(A2) Each CAV has only one destination at a time, i.e., |Qm| = 1;

(A3) There is no need for the CAVs to arrive at their destinations at the same time,

synchronously;

(A4) The local plant model of each CAV is based on the same map, i.e., they share the

same resource;

(A5) The CAV’s destination is an input to its control system. After arriving at a destina-

tion, the CAV: will have a new input to move to a new & different destination; or,

will be parked outside the road;

(A6) The communication2 topology is Vehicle to Vehicle (V2V), i.e., is done directly

between CAVs, wirelessly, and has a sufficient and limited range;

(A7) The delay and packet loss in the communication are negligible;

(A8) CAVs are fully automated.

The exponential explosion of states, and the scalability at runtime are problems

that, in other contexts, have already been solved in the literature (QUEIROZ, 2000,

2004; CAI; WONHAM, 2010). However, part of the purpose of this work is to perform

the distributed synthesis of the control, so it is necessary to propose a new method for

solving these problems.

1.5 OBJECTIVES

The general objective of this thesis is to propose a distributed control architec-

ture for CAVs modeled as DES, with solutions for scalability and reconfiguration. Also,

in this architecture, many solutions for CAVs can be modeled jointly, such as intersec-

tion management, road merging, dynamic path planning, and roundabouts. In sum-

mary, we present a distributed architecture with a scalable solution for both problems
2The communication technology is not the focus of this work. The most common solutions use the

IEEE 802.11 protocol, however, the research on Ultra-Reliable Low Latency Communication (URLLC)
over 5G, is in constant growth and may be adequate for CAV’s communications.

31

9

of coordination of intersection management and dynamic path planning assuring the

nonblocking and collision-free behavior, for multiple similar CAVs, with reconfigurable

path at runtime. Furthermore, the privacy of the CAV’s path is guaranteed through the

proposed architecture.

The following specific objectives are highlighted:

• Develop algorithms for the embedded synthesis CAV’s controllers;

• Develop an algorithm for automatic generation of the control specification;

• Perform the formal proof of the proposed architecture;

• Create didactic examples;

• Develop illustrative examples in a simulation environment;

• Implement the proposed architecture in an experimental testbed;

• Analyze the results achieved with simulations and experiments to validate the

proposed control architecture.

1.6 CONTRIBUTIONS AND ORGANIZATION OF THE DOCUMENT

In Chapter 2, a summary of the fundamental concepts of the SCT which are

related to this work are presented. We start by presenting the modeling formalism of

languages & automata, the definition of blocking and the synchronous composition op-

eration. Then we present three control structures in the framework of DES: monolithic,

distributed and multitasking. These concepts are the basis for the control architecture

proposed in this work.

In Chapters 4 and 3, two overviews are made to better understand the state of

the art of the supervisory control of multi-agent DES and CAVs control methods, re-

spectively. The overviews were carried out through a systematic search in the literature

with the aim to find the maximum number of works on the respective topics. The topic

in Chapter 4 is ampler, with many different nomenclatures which makes it difficult for

the search, and thus, two different searches were performed. Then, in each chapter,

we present the search methodology, and then realize the qualitative and quantitative

analysis over the works found through the search, regarding the characteristics studied

in this work.

32

10

In Chapter 5, the distributed, scalable and reconfigurable control architecture for

CAVs is presented, which is the main contribution of this work. To design this archi-

tecture, we have taken advantage of the characteristics of CAVs systems to propose a

novel solution to the blocking problem, without the exponential growth of states in any

phase of the design. In the context of CAVs control, the architecture is developed to

have a collision-free behavior, simultaneously providing the intersection management

and the dynamic path planning.

In Chapter 6, detailed examples are provided to support the understanding of

the proposed architecture. In the sequence, we present simulations which were de-

signed to stress the proposed architecture. We provide statistics to evaluate the effi-

ciency of the control. For the simulation we have adapted the Robotarium simulation

environment in Python. And finally, we have developed an infrastructure to perform ex-

periments with multiple CAVs. The infrastructure is composed by five Lego Mindstorms

robots, configured as line followers; and a road environment with 5×6 intersections. We

perform two experiments to demonstrate the feasibility of implementing the proposed

architecture.

Finally, in Chapter 8, the conclusions and a summary of future works are pre-

sented.

33

11

2 DISCRETE EVENT SYSTEMS AND SUPERVISORY CONTROL

The objective of this chapter is to present the main concepts of supervisory

control of Discrete Event System (DES), which are used as the basis for the control ar-

chitecture proposed in this work (CASSANDRAS; LAFORTUNE, 2021; CURY, 2001).

DES can represent many kinds of systems, including continuous and hybrid systems

at a higher level of abstraction. Considering the interest in this work, the CAVs’ paths

and behavior are adequately represented as DES.

Discrete event systems are systems in which the state-space is discrete and the

dynamic is driven by the asynchronous occurrence of discrete events. The concept of

DES is presented in Definition 1 (CASSANDRAS; LAFORTUNE, 2021).

Definition 1 (Discrete Event System). A discrete event system is an event-driven sys-

tem, with discrete states, i.e., its evolution depends entirely on the asynchronous oc-

currence of discrete events over time. ♢

The states represent the system’s situation, which may be a discrete physical

quantity, an abstract condition, or a combination of situations of various subsystems.

DES are dynamical systems, their states evolve over time and this evolution is given

through the occurrence of stimuli, which may originate from the system itself, or from

the external environment. These stimuli are called events (CURY, 2001). The tran-

sitions between states are associated with events. One event can be associated with

many transitions, wich necessarily have different origin states, but not necessarily have

different destination states.

Because DES have discrete state-space, events have an instantaneous duration

in time, and are also asynchronous in time. Events represent the occurrence of a

certain phenomenon in the system and can cause a change in its state. Figure 1

shows the state trajectory of any DES with states x1, x2, x3 and x4, and events α, β, γ

and δ.

Note that state transitions, given by events, are instantaneous. States remain

unchanged until an event occurs. The times of occurrence of events t1, t2, t3 and t4

are asynchronous in time. In theory, the events occcur instantaneously, i.e., they have

zero duration.

The definition of states and events can be interpreted in many ways. And over

34

12

Figure 1 – State evolution of a DES in time.

t

x1

x2

x3

x4

t1 t2 t3 t4

α

β

γ

δ

Source: Ramadge and Wonham (1989).

these interpretations there are many modeling formalisms such as Petri nets, Markov

chains, queuing theory, max-plus algebra, and languages & automata. In this work,

languages & automata are adopted as the modeling formalism.

2.1 LANGUAGES & AUTOMATA: DES MODELING FORMALISMS

Languages & automata are two complementary modeling formalisms. They both

can be used to represent the same behavior of a system, each one with a particular

characteristic. Philosophically, languages are to differential equations as automata are

to the Laplace transform.

2.1.1 Languages

Language is a simple way of representing the behavior of a DES through equa-

tions and text, based on the set theory. As with any language, the representation of a

DES by language has an alphabet composed by letters or symbols, denoted by Σ, and

words are formed by concatenating them. Thus, a language, denoted by L, is formed

by the set of words of this alphabet (CASSANDRAS; LAFORTUNE, 2021). The words,

or sequence of symbols, are usually called strings. A string is a finite-length sequence

of events in Σ.

The notation |Σ| represents the number of elements in Σ, and is valid for any

kind of set. The notation Σa = Σb \ Σc, means that Σa is formed by all elements of Σb

which are not contained in Σc.

35

13

Given a string s, its length, i.e., number of events including repetitions is denoted

by ∥s∥. Given the strings s and t, the concatenation of them is denoted by st. The set

of all finite strings that can be formed with the elements of Σ is denoted by Σ∗, including

the empty string ε (CURY, 2001). The set Σ∗ is also called the Kleene-closure of Σ.

Any subset of Σ∗ is called a language over Σ.

Language theory is based on set theory, because language is a set of words, just

as the alphabet is a set of symbols. Thus, some operations on sets can be performed

on languages, such as union, intersection, and difference, among others. Important

operations on languages are defined next.

The concatenation of two languages La, Lb ⊆ Σ∗ is defined as:

LaLb = {s ∈ Σ∗ : (s = sasb) and (sa ∈ La) and (sb ∈ Lb)}. (2.1)

The prefix-closure of a language L ⊆ Σ∗, is denoted by L, and defined by:

L = {s ∈ Σ∗ : ∃ t ∈ Σ∗ | (st ∈ L)}. (2.2)

In words, the prefix-closure of a language L ⊆ Σ∗ is the set of all prefixes of

the strings of the language L. Thus, L ⊆ L. A language is said to be prefix-closed if

L = L, i.e., all prefixes of the language L are contained in L.

The Klenee-closure of a language L ⊆ Σ∗, denoted by L∗, is result of the

concatenation of a finite number of strings in L, and is given by:

L∗ = {ε} ∪ L ∪ LL ∪ LLL ∪ ... (2.3)

In other words, Kleene-closure transforms a non-recursive language L ⊆ Σ∗

into a recursive language L∗.

A important concept for this works is the post-language of L after s, which de-

noted by L/s and defined as L/s = {t ∈ Σ∗ : st ∈ L}.

An important classification is the linevess of languages. The language L is live

if every string in L can be extended to another string in L. This represents a system

which has recursive actions.

To represent the behavior of DES by languages, each possible action of the

36

14

system is associated with an event which can be represented by a letter (or symbol),

that all together form the event set Σ.

The physical behavior of the system is a sequence of actions, represented by

strings that form a language L, i.e., the physical behavior determines which sequences

of events are possible to occur.

In some cases, it is difficult to visualize and understand a DES represent by

languages. For example, a language with infinite number of strings. To overcome this

difficulty, the representation of a DES through an automaton can be used.

2.1.2 Finite State Deterministic Automata

The representation of automata can be done in graphical form through a directed

graph, or in textual form through a six-tuple. These two methods will be discussed next.

An automaton is a six-tuple G = (Q,Σ, δ,Γ, q0, Qm), where Q is the set of states;

Σ is the finite set of events; δ: Q × Σ → Q is the partial transition function; Γ is the

active event function, in other words, it the set of events which has an output transition

in a given state and can be obtained from δ; q0 is the initial state, and; Qm is the marked

state set. The transition function δ is extended for strings such that δ: Q × Σ∗ → Q,

and:

δ(q0, s) = qn; (2.4)

in which s = σ1σ2 . . . σn, δ(q0, σ1) = q1, δ(q1, σ2) = q2, ..., δ(qn−1, σn) = qn.

It is important to note that the transition function may not be defined for all el-

ements of the event set Σ in every state of Q. This means that the transition function

can be partial, which is usually the case. The initial state q0 is unique and q0 ∈ Q. The

marked states Qm ⊆ Q can be multiple and represent a completed task in the system.

In a directed graph representation, states are represented by nodes (circles) and

events by labeled arcs (arrows). The initial state is represented as the destination of an

arrow with no source state, not characterizing an event. Marked states are represented

with a double circle.

As an example, Figure 2 represents an automaton G = (Q,Σ, δ,Γ, q0, Qm),

where Q = {0, 1, 2}; Σ = {α, β, γ}; δ(0, α) = 2, δ(0, γ) = 1, δ(0, β) = 0, δ(2, β) = 0;

Γ(0) = {α, β, γ}, Γ(1) = ∅, Γ(2) = {β}; q0 = 0; Qm = {0, 1}.

37

15

Figure 2 – Example of deterministic finite-state automaton.

0 1

2

β

γ

αβ

Source: designed by the author (2022).

Finite state deterministic automata can be represented by regular languages.

The automaton G is associated with two languages, L(G) called the generated lan-

guage of G and Lm(G) called the marked language. L(G) represents all physically

possible behavior of an automaton G, and Lm(G) represents the behavior of G in

which tasks are completed. Formally:

• L(G) = {s ∈ Σ∗ : δ(q0, s) is defined};

• Lm(G) = {s ∈ Σ∗ : δ(q0, s) ∈ Qm}.

Basically, Lm(G) ⊆ L(G) ⊆ Σ∗. A language can be defined from a given state

q, such as L(G, q) and Lm(G, q) which represent, respectively, the language and the

marked language of G starting from state q, in which L(G, q) = {s ∈ Σ∗ : δ(q, s) ∈ Q}
and Lm(G, q) = {s ∈ Σ∗ : δ(q, s) ∈ Qm}.

2.1.2.1 Accessible Part of an Automaton

An automaton can have inaccessible states starting from the initial state. Thus

it is important to define the accessibility of G. A state q ∈ Q is accessible if q = δ(q0, s)

for some s ∈ Σ∗.

The G automaton is said to be accessible if all states of G are accessible. If an

automaton is not accessible, the accessible component of an automaton can be ob-

tained by eliminating the non-accessible states and the transition functions associated

with them, this operation is known as Ac(G).

The accessible part of G with respect to a state q is:

Ac(G, q) = (Qac,Σ, δac,Γac, q, Qmac),

38

16

where Qac = {q′ ∈ Q : (∃s ∈ Σ∗)(δ(q, s) = q′ is defined)}, and δac = δ|Qac×Σ→Qac.

2.1.2.2 Coaccessible Part of an Automaton

A state q is said to be coaccessible if there is s ∈ Σ∗ such that δ(q, s = qm) in

which qm ∈ Qm. An automaton is coaccessible if all states are coaccessible.

In other words, the automaton G is said to be coaccessible, or nonblocking, if

each string s ∈ L(G) can be completed by t ∈ Σ∗ such that st ∈ Lm(G), i.e., each

string of L(G) is a prefix of Lm(G). This means that from any state of G there is at

least one string that takes G to a marked state.

If an automaton is not coaccessible, the coaccessible component of an automa-

ton can be obtained by eliminating the non-coaccessible states and the transition func-

tions associated with them, this operation is known as CoAc(G).

The coaccessible part of G with respect to q is:

CoAc(G, q) = (Qcoac,Σ, δcoac,Γcoac, q0oac , Qm),

where Qcoac = {q ∈ Q : (∃s ∈ Σ∗)(δ(q, s) ∈ Qm}; q0oac = q, if q ∈ Qcoac,undefined otherwise;

and δcoac = δ|Qcoac×Σ→Qcoac , which means that δ is restricted to the smaller domain of the

accessible states Qcoac.

2.1.2.3 Trim Component of an Automaton

The trim part of G with respect to q is obtained by computing both accessible

and coaccessible parts.

2.1.2.4 Blocking and Nonblocking

An automaton is said to be nonblocking if the prefix-closure of the marked lan-

guage of this automaton is equal to the automaton’s own language. In other words,

every string belonging to the automaton language has at least one suffix that leads to

a marked state. Below is a definition of blocking based on the conditions presented in

this paragraph.

39

17

Definition 2 (Blocking). (CASSANDRAS; LAFORTUNE, 2021). An automaton is con-

sidered to be blocking if there is at least one state, reached from the initial state, from

which a marked state cannot be reached. ♢

Formally, having the language L(G) as the closing prefix of the language Lm(G),

guarantees that G is nonblocking, i.e., it is necessary that L(G) = Lm(G). If this

equality is not satisfied, the automaton G is said to be blocking.

There are two different cases of blocking that occur depending on the conditions

presented. These cases are widely known in the literature as deadlock and livelock.

Deadlock occurs when an accessible state is not marked, and from that state, there is

no possibility of any event occurring. In other words, the system is literally locked in

the state and it means that the generated language of this system is not live. In the

case of livelock, it is possible that from an accessible state there are infinite transitions

between states, but a marked state will never be reached from these states.

In Figure 3, two cases of blocking are represented graphically, one automaton

with a deadlock and one automaton with a livelock.

Figure 3 – Blocking automata with: (a) deadlock in state 2 and (b) livelock between
states 2 and 3.

0 1

2

α

β

γ

(a)

0 1

23

α

β

γ

β

γ

(b)

Source: designed by the author (2022).

2.1.2.5 Synchronous Composition

The composition of automata allows the system to be modeled by several sub-

systems. Thus, instead of modeling the system as a whole, making the automaton

complex, it is possible to model several subsystems by simpler automata and then ob-

40

18

tain the global model by the composition of the automata. Even so, if the system is

relatively large, the automaton composition of the subsystems may lead to an automa-

ton with a large number of states and transitions.

Consider G1 = (Q1, Σ1, δ1,Γ1, q01 , Qm1) and G2 = (Q2, Σ2, δ2,Γ2, q02 , Qm2),

then, their synchronous composition, denoted by G1 ∥ G2, is given by:

G1 ∥ G2 = Ac(Q1 ×Q2, Σ1 ∪ Σ2, δ1∥2, Γ1∥2, (q01 , q02), Qm1 ×Qm2), (2.5)

where:

δ1∥2((q1, q2), σ) =


(δ1(q1, σ), δ2(q2, σ)), if σ ∈ Γ1(q1) ∩ Γ2(q2)

(δ1(q1, σ), q2), if σ ∈ Γ1(q1)\Σ2

(q1, δ2(q2, σ)), if σ ∈ Γ2(q2)\Σ1

undefined, otherwise

; (2.6)

Γ1∥2(q1, q2) = (Γ1(q1) ∩ Γ2(q2)) ∪ (Γ1(q1)\Σ2) ∪ (Γ2(q2)\Σ1). (2.7)

To exemplify the synchronous composition take both automata from Figure 4,

G1 = (Q1, Σ1, δ1,Γ1, q01 , Qm1) and G2 = (Q2, Σ2, δ2,Γ2, q02 , Qm2).

Figure 4 – Automata G1 and G2.

a b 0 1

G1 : G2 :

β
α

β

β
γ

β

Source: designed by the author (2022).

The synchronous composition of G1 e G2, is given by G1 ∥ G2 = Ac(Q1 ×
Q2, Σ1 ∪ Σ2, δ1∥2,Γ1∥2, (q01 , q02), Qm1 ×Qm2), and is represented in Figure 5.

One important note to make regards the number of states in the composition.

In the worst case, considering pairwise disjoint event sets, the number of states in the

composed automaton is the multiplication of the number of states of each individual

automaton used in the composition. For example, considering a composition of n au-

41

19

Figure 5 – Composition of automata G1 and G2.

a, 0

b, 0

a, 1

b, 1

αβ

β

γ

α

β

γ

β

Source: designed by the author (2022).

tomata with pairwise disjoint event sets and 2 states each, the resulting number of

states is 2n. This phenomenon is known as the exponential explosion of states (CAS-

SANDRAS; LAFORTUNE, 2021).

2.1.3 Representation of DES by Languages and Automata

Next, a brief example is provided to compare the representation of a DES by

a language and by an automaton. The representation by languages describes the

complete behavior of the system with the generated language and the possible tasks

that can be completed by the system. However, in order to represent the recursiveness

of a system, the number of strings becomes innumerable, thus making the analysis of

the system difficult. To deal with recursion, finite automata or regular languages can

be used.

Considering how an automatic door works, the system behavior is such that the

door can be opened and closed repeatedly, but it can never be opened twice without

first being closed. Consider α and β representing the actions of opening and closing,

respectively. The automaton G in Figure 2 represents the behavior of the door. This

generates a language L(G) = {ε, α, αβ, αβα, . . .}, where ε is the empty string. And

the marked language is given by Lm(G) = {ε, αβ, αβαβ, . . . }. It is intuitive that the au-

tomaton representation is easier to understand than the representation by languages.

2.2 SUPERVISORY CONTROL OF DES

The Supervisory Control Theory (SCT), which was first developed by Ramadge

and Wonham (1987), is based on the theory of formal languages and automata and is

42

20

Figure 6 – Automaton representation of a door functioning.

0 1

α

β

Source: designed by the author (2022).

applied to the control of DES. Specific terms are used in SCT, such as plant, specifi-

cation, supervisor, controllable event, and uncontrollable event.

A system generally has inputs and outputs, and depending on the case, they

can be intuitively associated with reading and writing, or receiving and acting, respec-

tively. In a DES control system (i.e. supervisor), generally, a control system input is

associated with an uncontrollable event, such as a sensor signal, and a control system

output is associated with a controllable event, such as turning a motor on.

It is important to clarify that in the Ramadge and Wonham (1987) framework,

all events (controllable and uncontrollable) are spontaneously generated by the plant,

i.e., the supervisor only enables/disables which controllable events can be generated

by the plant.

Controllable events are graphically represented with a labeled arc sectioned by a

slash (CURY, 2001). In Figure 7, an example is given, where the event γ is controllable,

and the event β is uncontrollable.

Figure 7 – Controllable event representation in a finite state automaton.

a b

β

\
γ

β

Source: designed by the author (2022).

Thus, events are classified into controllable and uncontrollable. The event set

can be divided such that Σ = Σc∪̇Σuc, where Σc represents the set of controllable

events, which can be enabled/disabled by the supervisor. And Σuc represents the set of

uncontrollable events, which cannot be disabled by the supervisor. Then, the evolution

of states over time is controlled by the supervisor through the enabling/disabling of the

occurrence of controllable events (RAMADGE; WONHAM, 1987).

The control action performed by the supervisor over DES is defined as:

43

21

Definition 3 (Control Action). The control action on DES is to enable or disable the

occurrence of controllable events in determinate states. ♢

The plant is the physical system to be controlled. In open loop, the plant may

present undesirable behaviors such as vehicles collisions or a vehicle moving in zigzag.

Thus, in order to restrict the behavior of the plant to desirable behaviors, control speci-

fications are created.

The goal in the SCT is to compute a supervisor, which will effectively control the

plant. It is ideal that the supervisor is minimally restrictive, i.e., it allows the maximum

occurrence of events assuring the control specifications, under a nonblocking behavior.

The supervisor works in a closed loop, receiving the events generated by the plant,

following the evolution of the plant through states, in which it enables or disables the

occurrence of controllable events, according to the specifications.

The existence of a nonblocking supervisor is conditioned to the existence of a

controllable sublanguage Lc ⊆ L(G), such that Lm(S/G) = Lc. The notation S/G,

means S controlling G. The Definition 4 presents the conditions needed for a language

to be controllable.

Definition 4 (Controlability). Consider a DES G = (Q,Σ, δ,Γ, q0, Qm) with the set of

uncontrollable events Σuc ⊆ Σ. Let L(K) ⊆ L(G), where L(K) ̸= ∅. Then there exists

supervisor S such that L(S/G) = L(K) iff L(K)Σuc ∩ L(G) ⊆ L(K). ♢

The SCT has formal procedures defined for synthesizing supervisors in different

kinds of architectures. Some of these architectures are the monolithic, presented by

Ramadge and Wonham (1987), the modular presented by Ramadge and Wonham

(1989), the local modular, presented by Queiroz (2000) and the supervisor localization

presented by Cai and Wonham (2010). The first, third and fourth methods will be

explained in the next sections, as they are of great importance for this work.

2.2.1 Controller vs. Supervisor

It is necessary to define the distinction between controller and supervisor, as

these concepts will be used later in the proposal of this work.

The control logic obtained through SCT is called supervisor due to some char-

acteristics, presented in the previous section, which are summarized in the following

definition.

44

22

Definition 5 (Supervisor). Supervisor is the name given to the element of control that

acts on a plant, enabling or disabling controllable events generated by the plant, in

which the closed-loop behavior must be nonblocking and minimally restrictive. ♢

The controller definition is shown below.

Definition 6 (Controller). Controller is the general name given to a control element

that performs control actions on a plant, in which the closed-loop behavior must be

nonblocking, however is not minimally restrictive. ♢

The difference evidenced is relative to the minimally restrictive behavior, which

is a characteristic assured by the supervisor and not by the controller.

2.2.2 Centralized or Monolithic Control

Presented by Ramadge and Wonham (1987), this approach consists of comput-

ing a single supervisor from one plant and one control specification. The plant may be

a composition of several models of subsystems. And the specification may be a com-

position of several specifications for the subsystems. The most important characteristic

is that the supervisor is obtained as a whole, and is most adequate to be implemented

in a centralized architecture. The control system obtained by this approach is illustrated

in Figure 8.

Figure 8 – Monolithic control architecture of DES in closed-loop.

Plant G Supervisor S
Events

Disablings

Source: Ramadge and Wonham (1989).

However, when modeling a large DES, it may be formed by several subsys-

tems. These subsystems can be modeled locally and then composed in a global plant

model. The synchronous composition is performed on the local models G1,G2, ...,Gn,

to obtain the global plant G = G1∥G2∥ . . . ∥Gn, where n is the number of subsystems.

45

23

This process is similar for the control specifications, which can be modeled

for each subsystem, or interaction of subsystems, and then composed into a global

specification. Thus, the synchronous composition is performed on the specifications

E1,E2, ...,Em, to form the specification E = E1∥E1∥ . . . ∥Em, where m is the number of

specifications.

Then the automaton K is obtained through the synchronous composition of E

and G, i.e., K = E∥G. The automaton K has the maximally permissive language

which respects the control specification. If all events in Σ are controllable, then K is

the supervisor. The problem is that the language of K, may be trying to disable uncon-

trollable events, thus, it is necessary to compute the maximally sublanguage of Lm(K)

that is controllable with relation to L(G), which is denoted by supC(L(G), Lm(K)).

In the synthesis of the supervisor, a state in which an uncontrollable event is

disabled by the language of K is a bad state. The algorithm of the supervisor searches

for these states and removes then, restricting the behavior of K through the disablings

of controllable events. Then, the trim component is computed over the resulting au-

tomaton. This process is done recursively, until there are no bad states in the resulting

automaton. Thus, the resulting automaton, generally called S, is the supervisor which

has the supremal controllable language over G.

It is important to note that as the number of specifications and the number of

plants increase, the number of states in K grows exponentially, due to the synchronous

composition of these automata, considering pairwise disjoint event sets. This exponen-

tial explosion of states can become a problem when it comes to computing the models

and implementing SCT, as the number of states directly affects the amount of memory

used to execute the algorithms.

2.2.3 Distributed Control of DES

There are two distributed control approaches that stand out in the literature, one

is called the local modular approach (QUEIROZ, 2000, 2004), and the other is called

the supervisor localization (CAI; WONHAM, 2010).

Basically, in the local modular approach, local supervisors are first calculated

and the conflict test is performed on the composition of the obtained supervisors. For

this reason, this technique can be characterized as bottom-up.

When localizing supervisors, the monolithic supervisor is first calculated and

46

24

then calculations are performed to locate the supervisors. Characterizing the approach

as top-down.

Next, the details of the local modular control of DES are given, which is used as

the basis to the architecture proposed in this work.

2.2.3.1 Local Modular Control

The local modular approach is an extension of the classic modular approach

(RAMADGE; WONHAM, 1989), as denoted by Queiroz (2000). This approach re-

duces the problem existent in the monolithic approach, in which the number of states

increases exponentially in relation to the number of subsystems, considering pairwise

disjoint event sets for each subsystem. Therefore, this approach reduces the compu-

tational complexity in the synthesis, in the implementation and in the maintenance of

the supervisors.

Instead of a supervisor, several supervisors are obtained which control the be-

havior of the plant (QUEIROZ; CURY, 2000). Figure 9 illustrates the architecture of this

control approach.

Figure 9 – Local modular control architecture of DES in closed-loop.

Local Plant G1

Local Plant G2

Local
Supervisor

S2

Local
Supervisor

S1

Events

Disablings

Events

Disablings

Source: Queiroz (2000).

The first step in the local modular approach is to obtain the most refined repre-

sentation by product system, which consists of not composing the subsystems’ plant

47

25

models unless they share events. In other words, if there are multiple subsystems that

share events, then they must be composed and, therefore, must be considered as one

subsystem. To adopt the local modular approach it is necessary that there are at least

two subsystems which have pair-wise disjoint events set (do not share events). Each

local subsystem model is called Gloci

To design the control system, a control specification must be made for each local

subsystem model.

The steps to obtain local supervisors are the same as in the monolithic ap-

proach, but the process is repeated for each local supervisor Sloci, where i varies

from 1 to the total number of local modules. The local supervisors Sloci are given

by Sloci = supC(L(Gloci), L(Kloci)). Where Kloci = Gloci∥Eloci.

Figure 10 illustrates how the models are disposed in the local modules. The

local plants are given by Gloc1 = G1∥G2, Gloc2 = G3∥G2, Gloc3 = G3∥G4.

Figure 10 – Disposal of the models in a local modular architecture.

Eloc1

/

Eloc2

/

Eloc3

/

G1

/

G2

/

G3

/

G4

/

Sloc1 Sloc2 Sloc3

Source: designed by the author (2022).

2.2.4 Multitasking Control

In the work of Queiroz, Cury and Wonham (2005), an approach to model DES

with multiple tasks and to solve problems of multitasking supervisory control of DES

48

26

is introduced. Basically, a DES has multiple classes of tasks when it is composed by

subsystems which have different objectives, that do not need to be accomplished at

the same time, nor in any sequence. They introduced the Multitasking Discrete Event

System (MTDES), which is a DES with multiple classes of tasks.

They introduced the notion of colored marking, where each color represents a

different class of tasks. The colors are indicated in the set of colors C and the colored

markings are represented as a function χ in the Colored Marking Automaton (CMA)

tuples: G = (Q,Σ, C, δ,Γ, q0, χ), where C is the set of colors and χ : Q → 2C is the

coloring function.

When composing automata with one class of task (i.e. one color), a state repre-

sents the completion of a task only when the states of each subsystem also completes

a task (see Figure 5). In the case of composing CMAs, the rule is:

• If both subsystems have the same class of tasks, then the composed state rep-

resents the completion of this task when the states of both subsystems complete

the task;

• If one subsystem Gi has one class of task, which is not present in any other

subsystem, then the composed state represents the completion of this task when

the states of Gi completes the task.

Formally, the composition of markings in a CMA is given by:

χ1∥2(q1|q2) = (χ1(q1) ∩ χ2(q2)) ∪ (χ1(q1)\Σ2) ∪ (χ2(q2)\Σ1). (2.8)

In Figure 11, a composition of two CMAs is illustrated. Note that C1 = {a, c},

C2 = {b, c}, χ1(0) = {a}, χ1(1) = {c}, χ2(0) = {b}, and , χ2(1) = {c}. Note that the

symbols in the states represent the colors, and not the name of the state.

The result is that C1∥2 = {a, b, c}, χ1∥2(0|0) = {a|b}, χ1∥2(0|1) = {a}, χ1∥2(1|0) =
{b}, and , χ1∥2(1|1) = {c}.

To design supervisory control for a plant modeled as a CMAs, it is interesting

that the specifications and the supervisor be modeled as CMAs. Furthermore, it is

interesting that new classes of tasks (new colors) can be introduced in the modeling

of the control specification. For example, a buffer specification could introduce a new

class of task: the desired quantity of elements in the buffer. In the implementation, the

49

27

Figure 11 – Composition of colored marking generators: (a) G1, (b) G2, and (c)
G1∥2 = G1∥G2.

a c

G1 :

β
α

β

(a)

b c

G2 :

β
γ

β

(b)

a|b

b

a

c

αβ

β
γ

α

β

γ

β

(c)

Source: designed by the author (2022).

supervisor introduces the new colors provided in the specifications. This architecture

is depicted in Figure 12.

Figure 12 – Multitasking with colored marking control architecture of DES in
closed-loop.

Plant G Supervisor S

∪

Events

Disablings

Colors

New Colors

Source: Queiroz, Cury and Wonham (2005).

2.2.4.1 Example of Supervisory Control of MTDES

To illustrate the solution of supervisory control of MTDES, the problem of the cat

and the mouse maze is recalled (RAMADGE; WONHAM, 1989).

The problem consists in a maze, in which the cat and the mouse cannot be in

the same room. The cat needs to feed from milk and the mouse needs to feed from

50

28

cheese. However, the problem is that both milk and cheese are disposed in the same

room at the maze. The maze is shown in Figure 13.

Figure 13 – Maze and CMA models.

The decreasing sequence above preserves regularity and converges in a finite number

of steps for a finite-state H. Then we can define

STrC1 Hð Þ :¼ lim H2j j!1ð Þ:

PROPOSITION 6 (de Queiroz, 2004) For the sequence above, we have LD(STrCV(H)) =

SupCSNB(AD, G, D).

In general, a supervisor for the maximal controllable and strongly nonblocking

behavior can be more restrictive than a nonblocking supervisor for the maximal

controllable language. The following proposition states that, if DYclosedness of a given

specification is valid, it also holds for the maximal controllable and strongly nonblocking

behavior. Thus, when AD is DYclosed, SupCSNB(AD, G, D) is the least restrictive

controllable, strongly nonblocking and DYclosed behavior contained in AD.

PROPOSITION 7 If AD is DYclosed w.r.t. G, then SupCSNB(AD, G, D) is also DYclosed.

Proof: Let MD = SupCSNB(AD, G, D). Suppose MD is not DYclosed. Then there exist

e 2 (D 7 C) and s 2 Le MDð Þ \ Le Gð Þ such that s u Le(MD). Let Ke = Le(MD) ? {s}. Then
Ke ¼ Le MDð Þ and Ke Ð Le(MD). Now let ND ={(Ld(MD), d), d 2 D j {d}} ? {(Ke, e)}.

Then ND Ð MD and LD NDð Þ ¼ LD MDð Þ. Thus, LD NDð Þ�u \ L Gð Þ ¼ LD MDð Þ�u \ L Gð Þ �
LD MDð Þ ¼ LD NDð Þ and for all d 2 D;Ld NDð Þ ¼ Ld MDð Þ ¼ LD MDð Þ ¼ LD MDð Þ, i.e., ND is control-

lable and strongly nonblocking w.r.t. D. Also MD � AD implies that for all d 2 D;

Ld MDð Þ � Ld ADð Þ and hence for all d 2 D \Cð Þ;Ld MDð Þ \ Ld Gð Þ � Ld ADð Þ \ Ld Gð Þ ¼ Ld ADð Þ. So,

for all d 2 (D 7 C), s 2 Ld(AD) and hence ND � AD. Therefore ND 2 CSNB(AD, G, D)

and ND Ð MD, contradicting the fact that MD is supremal. Consequently, SupCSNB(AD, G, D)

is DYclosed w.r.t. G. Í

4. Examples

In this section, the proposed approach is illustrated by two examples of supervisory

control problems. The first example regards the cat and mouse in a maze presented by

Figure 2. Maze (left) and models with colored marking for cat (Gc) and mouse (Gm).

MULTITASKING SUPERVISORY CONTROL OF DISCRETE-EVENT SYSTEMS 389

(a)

i

c

Gc

c1

c2\

c3

c4 c6

c5
/

c7

(b)

im

Gm

m3

m2\

m1

m6 m4

m5
/

(c)
Source: Queiroz, Cury and Wonham (2005).

The passage through the doors between rooms are named ci and mj for the

cat and the mouse, respectively, where i = 1, 2, . . . , 7 and j = 1, 2, . . . , 6. Note that all

passages are controllable, except for c7. The models for the cat and mouse are defined

as Gc and Gm, respectively. Cc = {i, c} and Cm = {i, m} represent the marking colors

for the cat and the mouse, respectively, where i represents the return to the initial state

for both mouse and cat, which is a "rest" task; c and m represent the task of the cat

drinking the milk and the mouse eating the cheese, respectively.

The control solution given by a CMA supervisor, which contains the maximal

controllable language and nonblocking w.r.t. the control specifications is shown in Fig-

ure 14.

Figure 14 – CMA supervisor solution for the maze problem.

i

m

c

m5

\
m6

m4/

c3

/

c4 \

c2\

c1

c7

Source: Queiroz, Cury and Wonham (2005).

51

29

2.2.5 Computation of the Supervisor

The supervisor’s computation is performed through algorithms that evaluate the

plant, generating a new automaton that represents the part of the plant’s behavior

which is in accordance with the control specifications, by disabling controllable events.

The control specifications generate a language which represents all feasible

actions for the system. The problem is that the behavior of this language may not be

controllable, i.e., this language may be trying to disable an uncontrollable event. In the

automaton, a state in which an uncontrollable event is disabled is called a bad state.

A bad state can be defined as an undesirable state of the system, from which

the execution of an uncontrollable event causes an undesired behavior, such as an

accident, or a collision in a CAV system. In the SCT, a bad state means a state in

which there is an uncontrollable event which would lead to an undesirable behavior.

In the supC algorithm, the bad states are identified and removed from the su-

pervisor automaton. Each time a bad state is found, the Trim operation is applied and

bad states are searched again, until there are no bad states in the trimmed automaton.

In the supC algorithm, the supremal controllable language is obtained, which

means a nonblocking maximally permissive language under the desired behavior.

The traditional way of computing the supervisor is performed offline, i.e., the

computing of the supervisor is performed prior to the execution of the system, and

the supervisor found contains all the nonblocking strings allowed by the control spec-

ification. It should be noted that in case of changes in the plant models or control

specifications, the supervisor must be recomputed, or reconfigured.

Another technique found in the literature is the supervisor’s online calculation

with the limited lookahead strategy (CHUNG; LAFORTUNE; LIN, 1992). In this case,

the supervisor is calculated at runtime, but only a truncated part of the supervisor is

calculated. In each state of the supervisor a new truncated supervisor is computed up

to N transitions ahead.

In this work, it is proposed that the controllers be computed online, but not as

in the limited lookahead technique. It is proposed that the supervisor be computed

as a whole. To do this, an architecture with an algorithm which computes the control

specification is proposed. More details are given in Chapter 5.

52

30

2.3 DISCUSSION

In this chapter, the concepts that serve as a basis for understanding the pro-

posal of this work were presented. The concepts about DES were briefly presented,

while other works show the same concepts extensively (CASSANDRAS; LAFORTUNE,

2021; CURY, 2001). Two important supervisor synthesis methods were detailed, the

monolithic and the local modular.

Comparing the techniques of local control (local modular and supervisor local-

ization), both allow the calculation of local supervisors, and the joint action of modular

supervisors results in a closed-loop behavior equal to the behavior imposed by the

monolithic supervisor. Therefore, it is feasible and appropriate that the control of multi-

agent DES is performed in a distributed manner. However, through the techniques

mentioned above, the control of multi-agent systems is limited regarding the charac-

teristics of multi-agent DES. For example, these distributed control techniques do not

allow the controlled multi-agent system to have a variable number of agents over time.

Due to the multi-agent nature of CAVs sytems, it is essential that the control

architecture proposed in this work considers a solution for multitasking. In the archi-

tecture proposed in this work we combine the ideas from the modular local approach

with the multitasking approach, exploring multi-agent characteristics of CAVs to create

a specific approach for them.

53

31

3 RELATED WORKS ON CONTROL OF CAVS

In this chapter, we aim to determine the state-of-the-art of CAVs control tech-

niques (GUANETTI; KIM; BORRELLI, 2018). To do this, a systematic literature review

is made regarding the characteristics of interest of this work.

Regarding the control of CAVs, there are many aspects which can be explored,

for example: the structure, which can be centralized, decentralized or distributed; the

formation control, which can be tri-dimensional, bi-dimensional, uni-dimensional or

none; the scope of the coordination which can be an isolated intersection, a round-

about or lane changing; traffic control (GUO; LI; BAN, 2019); and the path planning,

which may be optimized individually or globally. The uni-dimensional formation is often

called platooning control, and the tri-dimensional and bi-dimensional are commonly

applied to unmanned aerial vehicles, such as drones. The path planning may be clas-

sified into low level, which considers the continuous dynamics; or into high level which

abstracts the continuous dynamics. Due to this complexity with the characteristics of

CAVs, we first start this chapter with a brief review on the basic concepts of CAVs.

The organization of this chapter is similar to the Chapter 4, but focused in exis-

tent control methods for CAVs. In Section 3.1, the basic concepts of CAVs control are

presented, and in the following sections, the systematic review is presented.

3.1 CONCEPTS AND TERMINOLOGY

In this section, the main concepts and common terms in the control solutions for

CAVs in the literature are presented.

Considering the complexity of CAVs control, it is usual to delimit a specific scope

in each solution presented in the literature. These scopes are presented in the follow-

ing.

3.1.1 Cruise Control

The objective in cruise control is to control the speed of the vehicle. It is popular

in Human-Driven Vehicles (HDVs). Usually, it allows the driver to set a constant speed

reference for the controller. In sophisticated HDVs, the cruise control allows to follow

54

32

the preceding vehicle, with the same speed, through distance sensors. In CAVs, it

allows to follow the preceding vehicle through Vehicle to Vehicle (V2V) communication.

An example of cruise control of CAVs can be seen in the work of Moser et al. (2018).

3.1.2 Platooning

Platooning is a very common control solution for CAVs due to its appeal in the

improvement of the efficient use of energy. Basically, a platoon is a queue of vehicles,

traveling one behind the other to reduce the aerodynamic drag. The communication

is usually V2V, however specific topologies are used, such as: predecessor following,

predecessor following leader, bidirectional, and bidirectional leader (GUO et al., 2020).

3.1.3 Lane Changing

The objective in the lane changing problem is to plan the trajectory from one

lane to another of one CAV, considering the position and speed of other vehicles in the

road. An example of lane changing control of CAVs is found in the work of Goulet and

Ayalew (2021).

3.1.4 Road Merging

The road merging problem is quite similar to the lane changing problem. The

difference is that the merging has to be done in a specific point in the road. Thus,

vehicles have to match their velocity to merge with a collision-free behavior. A setup

of a highway (main lane) with a slip road is used in many works. More details of road

merging control of CAVs can be seen in the work of Rios-Torres and Malikopoulos

(2017b).

3.1.5 Roundabouts

The coordination of CAVs in roundabouts can be considered as a mix of road

merging and lane changing. Basically, when entering the roundabout, the problem is

similar to road merging. And, considering a multi-lane roundabout, there is a problem

of lane changing. Furthermore, there is another problem that is treated in the literature,

which is the trajectory optimization in a multi-lane roundabout. An example of maneu-

55

33

vers planning for CAVs in a single-lane roundabout is found in the work of Debada and

Gillet (2018).

3.1.6 Intersections Management

The intersection management for CAVs is basically a coordination of their move-

ment, to pass through the intersection with a collision-free behavior. Most of the works

in the literature present solution for an isolated intersection (MIRHELI et al., 2019;

ZHANG; CASSANDRAS, 2019; GUAN et al., 2020; KAMAL et al., 2015; STEINMETZ

et al., 2018). Some works present solutions for multiple intersections management,

such as the work of Chen et al. (2020), but it is interesting to note that this solution is

independent of path planning.

3.1.7 Path Planning

Path planning is a generic term in the research field of CAVs, and it is used to

refer to many different situations. For example, there may be a path planning in the

solutions of lane changing, road merging, intersections management. The problem of

path planning may be modeled in a low level approach, where the dynamics of the

CAVs are modeled in a continuous state-space; or, in another point of view, it could be

modeled in a high level approach, with a discrete state-space, in which the continuous

dynamics are abstracted. Furthermore, there are another similar terms used to refer

to the same problem, such as trajectory planning and navigation planning (FRANSEN

et al., 2020).

3.1.8 Communication Topology

There are different topologies for CAVs communication. The vehicle-to-vehicle

(V2V) communication is used when there is no infrastructure, i.e., each vehicle trades

information directly to others. Another one, is the vehicle-to-infrastructure (V2I) com-

munication, where each vehicle trades information with the infrastructure. There is also

the V2X communication, which is an acronym for vehicle-to-all, considering that the ve-

hicle can communicate to other vehicles and also to the infrastructure. And finally, the

infrastructure-to-infrastructure (I2I) communication, where infrastructures trade infor-

mation (SINGH; NANDI; NANDI, 2019) .

56

34

The V2V communication is often used in distributed architectures, in which

CAVs need to communicate to each other due to the absence of infrastructure. The V2I

communication is used in centralized architectures, in which the coordination is made

in a centralized infrastructure. And, the I2I communication is used in decentralized

architectures, in which the coordination is made within many infrastructures (KHAN et

al., 2022).

3.2 METHODOLOGY FOR THE SEARCH OF PAPERS IN THE LITERATURE

In this section we present the methodology used to perform the review on con-

trol of CAVs. The steps of this review are the same presented in Section 4.2. As we

are searching for control solutions which includes a distributed architecture, scalability

and automatic reconfiguration, we have defined a general search phrase: ("connected

and automated vehicles") AND (reconfigurable) AND ("path planning" OR trajec-

tory) AND ("distributed control" OR "distributed coordination") AND scalable.

However, we were not able to find any work with this global search phrase, applied to

all fields (title, abstract, whole document, etc). Furthermore, as we have tried to dis-

card some of the terms, we have found hundreds of works, which would be unfeasible

to select manually. To solve this, we have divided the search in two searches, which

are explained next.

3.3 FIRST SEARCH FOR PAPERS

In the first search, we have discarded many terms, to simplify the search phrase,

however, the search was limited to the title of the papers. The search phrase ap-

plied was: distributed AND ("connected and automated vehicles" OR "connected

and automated vehicle" OR "connected automated vehicle" OR "connected au-

tomated vehicles"). This way, we have found related papers, which may not fulfill all

three features. The details of the search in each base is shown in Table 2.

3.3.1 Analysis on the Papers Found in the First Search

In this section a brief analysis is made to contextualize the solutions found in the

first search.

57

35

Table 2 – Information on the first search for works in the literature.

Base Search Type Fields Quantity
Engineering Village Quick Search Title 18
IEEExplore Command Search Document Title 8
Science Direct Advanced Title 3
SCOPUS Advanced Title 13
Springer Advanced Title 6
Wiley Advanced Title 2
Web of Science Advanced Title 12
Total (excluding repeated and unrelated) 12

Source: designed by the author (2022).

Li et al. (2017) propose a framework for distributed platooning control of CAVs.

Their framework is applicable to continuous state-space systems. The interesting point

is that they use neighbors’ information to implement the feedback control for the dis-

tributed controllers. They comment about the unstructured distributed control in which

an all-to-all communication is required; and the structured control law which may be

implemented in an explicit or implicit way.

Du, HomChaudhuri and Pisu (2018) propose an interesting architecture, in which

the distributed control is in the infrastructure, not in the CAVs. Thus, the control struc-

ture is classified as decentralized. They propose an intersection manager which com-

municates with other intersection managers next to it, to coordinate the traffic. There

is a problem of having a coordinator control at intersections, because every intersec-

tion would require an infrastructure installation. If we observe, in HDVs traffic’s, not all

intersections have traffic lights, because it has a cost involved, and in some cases it is

not the most efficient solution.

Feng et al. (2018) propose a distributed method for the formation control of

CAVs based on a continuous state-space modeling. Their solution is distributed in the

sense of CAVs in a group which are traveling in formation. In the sense of the whole

transit, the leading vehicle needs to communicate with a central coordinator. In other

words, the solution of path planning for diverse groups of vehicles is centralized. The

communication is made in such a way that there is a certain privacy of information

between CAVs.

Guo et al. (2020) have developed a distributed method for CAVs platoon con-

trol based on continuous state-space modeling. Their method includes model-based

predictive control, among other techniques which are not related with the interest of

58

36

this thesis. The interesting part for this work, is related with the distribution of control.

Their solution is called distributed adaptive triple-step nonlinear control strategy, which

includes: a distributed reference generator; a distributed adaptive updating law for

kinematic and dynamic uncertainties; and a distributed adaptive triple-step nonlinear

control law. Their focus is on the control of the dynamics of the platoon. The control of

the speed dynamics is made on the leader of the platoon, and passed by as reference

for the following CAVs. Therefore, the CAVs share a model structure, but each one has

its own parameters, which allow the distribution of the control. Yet, they have to share

some variables between adjacent CAVs, in an online manner, such as the position,

velocity, acceleration and the constant headway time.

Chen et al. (2021b) present a control architecture for CAVs on a ramp merging

situation based on continuous state-space modeling. Their method is a virtual rotation

approach, where the merging is considered as a virtual platoon. Thus CAVs adapt

their velocity as they were following the CAV at the other lane. They propose a two

layer control, in which the virtual rotation process is considered an upper level control

that is centralized in the infrastructure. And a low-level distributed control where the

trajectories are computed. Therefore, their method is not entirely distributed.

Chen et al. (2021a) propose an adaptive control method for a mixed platoon

formation consisted by CAVs and HDVs based on continuous state-space modeling.

They propose a distributed architecture with a V2V communication. They use the in-

formation shared between CAVs to update adaptive controller parameters. In order to

consider HDVs in the platoon CAVs are equipped with distance sensors to measure

the distance without communication.

Goulet and Ayalew (2021) propose a distributed control method for CAVs trav-

eling in a multi-lane road based on a continuous state-space modeling. Their method

controls the CAVs’ maneuvers and speed based on observations and communications.

Their method is based on a distributed model-based predictive control.

Wu et al. (2021) develop a distributed control method comprising the merging of

CAVs platoons in multilane roads. Their method is based on continuous state-space

modeling. The solution is made with a consensus-based algorithm with intrinsic colli-

sion avoidance. They propose a two layer architecture in which one layer is responsible

for the coordination of the movements and the other layer is responsible for the trajec-

tory tracking control of the CAVs.

59

37

Katriniok, Rosarius and Mähönen (2022) propose a distributed control method

for coordination of CAVs at intersections. Their method is based on continuous state-

space modeling, using the model predictive control technique. They use a V2V com-

munication in which the path of each vehicle is shared with others. In the trajectory

computation, an optimization control problem is solved. The objective of the control

architecture is to provide ride comfort and efficiency with collision avoidance behavior,

while observing the constraints of the vehicle.

Luo et al. (2022) propose a distributed control method for multiobjective CAVs

platooning. Their method is based on continuous state-space modeling, using a dis-

tributed model predictive control technique. The proposed architecture is formed by a

cooperative driving control layer and an energy efficiency optimization control layer.

Prayitno and Nilkhamhang (2022) develop a distributed model reference con-

troller to solve the platooning of CAVs considering a communication topology is mod-

eled by an adjacency matrix, which indicates the flow of information between CAVs.

This way the information flow can be redundant, overcoming external disturbances

and bounded leader input.

Wu et al. (2022) present a distributed control architecture to manage the trajec-

tory of multiple CAVs in an isolated roundabout with multiple lanes. Their technique

is based on the continuous state space and the objective is to optimize the CAVs tra-

jectories considering the difference length of lanes in the roundabout. They propose

an interesting approach to the problem with a globally near-optimal solution. When

applying a control solution in a distributed architecture, it is unfeasible or inadequate

to achieve a globally optimal solution. To overcome this problem, they propose to sep-

arate the coordination of CAVs between lanes to the trajectory planning algorithm to

ensure globally near-optimal trajectories.

To summarize the analysis of the papers found in the first search, in Table 3

the comparison of the solutions is made regarding the three features proposed in this

work. It is important to note that none of the papers proposes a complete solution

of path planning, therefore, none of them could be reconfigurable in terms of path

planning. Another important observation is that all solutions are based on continuous

state-space, which is an evidence that the solutions are most based in the vehicle’s

continuous dynamics, such as speed and torque. Only two solutions are not distributed

and only one solution is not scalable. Therefore, the proposal of this work must focus

60

38

efforts on the reconfiguration feature.

Table 3 – Comparison of solutions in the first search, regarding the three features:
Distributed, Scalable, and Reconfigurable

Work Distributed Scalable Reconfigurable
Katriniok, Rosarius and Mähönen (2022) Yes Yes No

Luo et al. (2022) Yes Yes No
Prayitno and Nilkhamhang (2022) Yes Yes No

Wu et al. (2022) Yes Yes No
Wu et al. (2021) Yes Yes No

Chen et al. (2021b) No Yes No
Chen et al. (2021a) Yes No No

Goulet and Ayalew (2021) Yes Yes No
Guo et al. (2020) Yes Yes No

Du, HomChaudhuri and Pisu (2018) No Yes No
Feng et al. (2018) Yes Yes No

Li et al. (2017) Yes Yes No

Source: designed by the author (2022).

3.4 SECOND SEARCH FOR PAPERS

For the second search we have used the general search phrase as basis and

made some observations:

1. Some works present an intrinsic scalable solution without mentioning it;

• To solve this, we have removed scalable from the search phrase, with the

odd of having to read many works with solutions that are not in fact scalable.

2. Some works use synonyms for reconfigurable path planning, such as dynamic

path planning and online path planning;

• To solve this, we have added the terms online and dynamic.

It is important to note that this is an evidence that scalability and reconfiguration

are not established research fields.

Finally, the search phrase applied in the second search was: ("connected and

automated vehicles") AND (online OR dynamic OR reconfigurable) AND ("path

61

39

planning" OR trajectory) AND ("distributed control" OR "distributed coordina-

tion"). As this search phrase is more restrictive, it was applied to search in the whole

document. The details of the second search in each base is shown in Table 4.

Table 4 – Information on the second search for works in the literature.

Base Search Type Fields/ Filtering Quantity
Engineering Village Quick Search - 3
IEEExplore Command Search - 2
Science Direct Quick Articles & Proc. 31
SCOPUS Quick T.A.K. 1
Springer Quick - 14
Wiley Quick - 3
Web of Science Quick - 4
Total (excluding repeated and unrelated) 20

Source: designed by the author (2022).

3.4.1 Analysis on the Papers Found in the Second Search

In this section, the analysis of the papers found in the second search is pre-

sented.

Liu, Ozguner and Zhang (2017) propose a distributed control method for co-

operative highway driving. Their method is applied to a cooperative lane changing,

however they assert that lane changing is the basis to build more complex maneuvers,

and thus, their method can be extended to other maneuvers such as road merging

and roundabouts merging. Their solution is based on a distributed Model Predictive

Control (MPC) with continuous state-space modeling. Their architecture is based on

three layers: decision consensus; cooperation strategy; and distributed controllers. In

the decision consensus layer, vehicles trade information whether the desired maneu-

ver is feasible or not. In the cooperation strategy layer, a vehicle is chosen to send the

cooperation command of the desired maneuver for the distributed controller layer. In

the distributed controller layer, the trajectory of the maneuver is optimized.

The objective in the work of Petrillo et al. (2018) is to provide a distributed control

system for CAVs platooning which is insusceptible to communication problems such

as multiple time-varying delays. They use the continuous state-space modeling for

the vehicles dynamics and the discrete state-space modeling for the communication

62

40

topology. Their architecture consist in one layer controller in cavi which receives inputs

from all CAVs and generate a control action for cavi.

Wang (2018) proposes an adaptive control for mixed CAV’s platoons. The objec-

tive is to assure the string stability when one CAV is placed among a platoon of HDVs.

Their method is based on the continuous state-space modeling. They use a central-

ized control structure which receives data from CAVs and estimates the parameters of

HDVs.

Xu et al. (2018) present a distributed feedback control scheme to manage CAVs

at an unsignalized intersection. Their method is based on the continuous state-space

modeling. They propose to manage the intersection with a virtual platoon, which is

a similar method to the virtual rotation approach (CHEN et al., 2021b). The virtual

platoon method is basically to create a queue, in which the first CAV in the queue is

the closer to the center of the intersection, considering any direction.

Zhu and Zhu (2019) propose a barrier-function-based distributed adaptive con-

trol for CAVs platoon, considering its non-linearities. They claim that the linearization

requires the complete a priori knowledge of the plant, which makes it unfeasible in

practice. Their method is based on the continuous state-space, modeled as differential

equations.

Li et al. (2020) propose a centralized scalable control for CAVs regarding route

planning and trajectory following. Their method is based on parallel computing in a

cloud center to support the computational burden of large-scale systems. On interest-

ing observation is that they consider CAVs as fully controllable and observable. One

advantage of this method is to obtain a global optimization regarding the path planning,

however the costs of operation and maintenance of the cloud computing center may

make it unfeasible.

Hu et al. (2021a) propose a control method for intersection management of

CAVs. The control architecture is composed of two layers, a centralized supervision

level and a distributed execution level. Their method is based on the virtual platoon

approach.

Liu et al. (2022) propose a joint control of the traffic signal and trajectories of

vehicle platoons. The control structure is based on a single layer, in which the op-

timization of both problems of cycle timing in the signal and the trajectories of the

platoons are modeled. Their method is based on continuous state-space modeling.

63

41

Zhang et al. (2020) propose a control structure of CAVs platoon control. The

structure is based on two layers, where one layer deals with the internal control of the

CAV, regarding the position and velocity of it. The other layer deals with the cooperation

of CAVs considering the multi-agent aspects of CAVs systems. The structure is based

on continuous state-space through Laplace transfer function modeling.

Wei et al. (2017) propose a control scheme for CAVs trajectories, which can be

applied in cruise control and platooning. The modeling is based on the continuous

state-space. The communication method relies on a structure installed aside of the

roads.

Chen et al. (2020a) present a joint control system for CAVs platoon in the prox-

imity of a connected traffic light. The control structure is distributed, considering a

Vehicle to Vehicle and Vehicle to Infrastructure communication (V2X) communication

in which the communication of the platoon is made in a V2V and the communication

between the traffic light and the platoon leader is made in a Vehicle to Infrastructure

communication (V2I) topology.

Katriniok (2020) proposes a consensus-based distributed control method for

CAV’s lane changing. The structure has two layers, a low level layer, which is related

to the local optimization and is run locally in each agent, and a coordination layer for

the consensus decision, which is run on the CAV which desires to change lane.

Kneissl et al. (2020) propose a combined scheduling-control method for man-

aging CAVs at an isolated intersection. The structure is formed by two layers, a infras-

tructure which is in the layer of the scheduling management of the intersection; and the

distributed MPC which is in the low level control layer.

Shi et al. (2022) presents a learning based distributed scheme for the longitu-

dinal control of CAVs. The objective of the method is to stabilize traffic oscillations of

platoons under communication failures.

Wang and Chen (2021) present a hierarchical control scheme for CAVs 2D flock-

ing. The structure is composed by two layers, in which the low level layer deals with

the control of the CAVs trajectory, and the high level layer deals with the flocking coor-

dination between CAVs.

Yang, Feng and Liu (2021) propose a control structure for CAVs coordination at

multiple intersections. The environment is considered to be mixed, with CAVs, con-

nected vehicles (not automated) and HDVs. The proposed structure is hierarchical

64

42

with three layers. At the lower layer, the vehicle trajectory is controlled regarding the

collision-free behavior, optimal trajectories and cruise control. The second layer re-

gards the intersection management. And the top layer regards the corridor level, which

manages the link between intersections.

Tajalli, Mehrabipour and Hajbabaie (2021) propose a decentralized control struc-

ture for intersection management CAVs, with speed optimization. In the structure,

there is a controller for each intersection which communicates to other intersection

controllers and to vehicles. It is developed a distributed optimization solution consider-

ing a trade off between maximal throughput and minimal speed variation.

Zhuang, Xu and Yin (2020) propose a platoon control for CAVs. The control

structure is based on two layers. The higher layer is responsible for planning the pla-

toon formation, and the lower level is responsible for the dynamics of the CAV.

Bakibillah et al. (2019) propose a distributed control scheme for CAVs platoons.

The structure is based on MPC with a continuous state-space modeling.

Hu et al. (2021b) propose a control structure for on-ramp merging of CAVs.

The control structure is based on two layers. The decision for the coordination of the

merging is in the centralized high layer. And the dynamics of the CAVs are controlled

in the lower layer, based on the continuous state-space modeling.

In Table 5, a summary considering the features of interest of this works on the

control structure of each paper is presented. Similarly to the papers found in the first

search, it was not found any work which solves the high-level path planning in a com-

plete manner, i.e., give a starting point calculate the control actions to generate a path

which achieve a destination. The path planning found in the works are related to the

low level control of position and speed.

3.5 OTHER SEARCHES

Besides the systematic search, some works were found empirically, by perform-

ing isolated searches on the databases. An objective analysis is made on these works

and presented in Table 6.

65

43

Table 5 – Comparison of solutions in the second search, regarding the three features:
Distributed, Scalable, and Reconfigurable

Work Distributed Scalable Reconfigurable
Liu, Ozguner and Zhang (2017) Yes Yes No

Petrillo et al. (2018) Yes Yes No
Wang (2018) No No No

Xu et al. (2018) Yes No No
Zhu and Zhu (2019) Yes Yes No

Li et al. (2020) No Yes No
Hu et al. (2021a) No No No
Liu et al. (2022) No No No

Zhang et al. (2020) Yes Yes No
Wei et al. (2017) No No No

Chen et al. (2020a) Yes Yes No
Katriniok (2020) Yes No No

Kneissl et al. (2020) No No No
Shi et al. (2022) Yes No No

Yang, Feng and Liu (2021) No No No
Wang and Chen (2021) No No No

Tajalli, Mehrabipour and Hajbabaie (2021) No No No
Zhuang, Xu and Yin (2020) Yes Yes No

Bakibillah et al. (2019) Yes Yes No
Hu et al. (2021b) No No No

Source: designed by the author (2022).

3.6 DISCUSSION

While executing the research in this chapter, the objective was to find the maxi-

mum number of works to comprehend the state of the art of the control of CAVs.

Through the study presented in this chapter, it was possible to gather various

important characteristics of the control of a multi-CAV system. One interesting obser-

vation is that many works propose a similar strategy where the architecture is divided

in, at least, a coordination (or cooperative) control layer and a trajectory optimization

control layer (FENG et al., 2018; WU et al., 2021; LUO et al., 2022; WU et al., 2022;

LIU; OZGUNER; ZHANG, 2017; ZHUANG; XU; YIN, 2020; HU et al., 2021b).

The classification of the scalability is a complex task, because in this work, we

are interested in an architecture which allows the escalation of the control system at

runtime. Most works present a modeling technique which depends on the number of

vehicles, which allows its escalation. However, they do not present an architecture

which allows the escalation at runtime. Nevertheless, we have classified these works

66

44

Table 6 – Comparison of solutions in the literature, regarding three features:
Distributed, Scalable, and Reconfigurable

Work Distributed Scalable Reconfigurable
Chalaki and Malikopoulos (2021) No Yes No

Chen et al. (2020) Yes Yes No
Ding et al. (2020) No Yes No

Fransen et al. (2020) No No Yes
Guan et al. (2020) No Yes No

Basile, Chiacchio and Marino (2019) No Yes No
Mirheli et al. (2019) Yes No No

Wang, Zhao and Yin (2019) No Yes No
Yu et al. (2019) No No No

Zhang and Cassandras (2019) No Yes No
Steinmetz et al. (2018) No Yes No

Clark et al. (2017) Yes Yes No
Hill and Lafortune (2017) No Yes No

Rios-Torres and Malikopoulos (2017a) No Yes No
Wuthishuwong and Traechtler (2017) Yes Yes No

Kamal et al. (2015) No Yes No
Vemulapalli, Dasgupta and Kuhl (2008) Yes Yes No

as scalable.

We have found very interesting, sophisticated and reliable techniques, however,

most (if not all) treat an isolated problem of the control of CAVs. For example, high-

way merging, intersection management and roundabout merging. Besides, we have

searched in all found works for the three features of interest in this work (distributed

architecture, scalability, and automatic control reconfiguration), and to the best of our

knowledge, we have not found one control architecture for CAVs which embraces them

all. This fact support the need for the development of an architecture with the three

features, which is presented in the Chapter 5.

67

45

4 RELATED WORKS ON SUPERVISORY CONTROL OF MULTI-AGENT DES

The objective of this chapter is to present techniques of control for multi-agent

DES. First, the concept of multi-agent is presented, and then a study is carried out to

determine the state of the art in the control of multi-agent DES, through a systematic

literature review. The purpose of this analysis is to present the existing techniques

in the literature, which can serve as a basis for the ideas of this work and align the

development of the work with the existing gaps in the literature, corroborating to the

originality of the work.

The systematic review of the literature is focused on finding in the literature, the

maximum number of related works in order to recognize all existing solutions. It is

noteworthy that, as it is “systematic”, the review is free from biases that may limit the

number of studies found. On the other hand, it is possible that some related works are

not found through a systematic search. Thus, the systematic search is complemented

with an empirical search, based on the author’s experience.

4.1 MULTI-AGENT SYSTEMS

The concept of multi-agent systems was created in the field of computer science,

in the 80’s. In this field of knowledge, the multi-agent systems can be defined as: “[...]

a weakly coupled network of problem solvers which interacts to solve problems which

are beyond the capacity or knowledge of each individual problem solver” (DURFEE;

LESSER, 1989 apud HüBNER, 2017). Another way to define is: “[...] an organization

of agents interacting together in a shared environment” (HüBNER, 2014).

In Figure 15 it is shown that the interaction of an agent can be performed with

only a few agents. Thus, it is possible to form interaction groups between agents. Still,

in the same figure, it is illustrated that each agent has an area of action within the

environment, which characterizes a system with limited accessibility to the environ-

ment. If there is no overlap between the areas, the control of each agent is relatively

simple, as it is independent of other agents. When there is an overlap, the control

of the multi-agent system as a whole becomes more complex because it is neces-

sary for the control to avoid possible conflicts between agents (BORDINI; HüBNER;

WOOLDRIDGE, 2007). Another detail in Figure 15 is the fact that not all agents are

acting in the environment, that is, over time agents may stop acting, reaching a waiting

68

46

Figure 15 – Illustration of a multi-agent system.6 INTRODUCTION

Environment

Sphere of influence

KEY

Agent

Interaction

Organisational relationship

Figure 1.2 Typical structure of a multi-agent system (after [58]).

Above the environment, we see the agents themselves, which stand in various
organisational relationships to one another (for example, one agent may be the
peer of another, or may have line authority over another). Finally, these agents
will have some knowledge of each other, though it may be the case that an agent
does not have complete knowledge of the other agents in the system.

Programming Languages for Agents and Multi-Agent Systems

We now have some idea of what kinds of properties we are thinking of in our
agents. So, suppose we want to program these things: what do these properties tell
us about the kinds of programming language or environment that we might use for
programming autonomous agents? We can identify the following requirements:

Source: Bordini, Hübner and Wooldridge (2007).

state until they receive a new task.

In the engineering research field, multi-agent systems can represent manufac-

turing plants, communication networks, and robot swarms, among others. The Defini-

tion 7 is summarized considering generic multi-agent systems in engineering.

Definition 7 (Multi-agent System). Multi-agent system is a system formed by auton-

omous agents that interact in the same environment through sensors and actuators,

sharing resources and/or dividing tasks. ♢

Agents are individuals who act (interact) in the environment, therefore they can

be considered active. These can represent machines, robots, and devices that inter-

act in an environment, composing the multi-agent system. Figure 16 illustrates the

fundamental characteristics of an agent.

In Figure 16, the agent’s sensors are represented through a pair of eyes, which

visualize the state of the environment. Embedded to the agent, decisions are made,

69

47

Figure 16 – Components of an agent.1.2. CHARACTERISTICS OF AGENTS 3

Environment

Percepts

Effectors/
actuators

Sensors

Actions

?

Figure 1.1 Agent and environment (after [82, p. 32]).

view of an agent as shown in Figure 1.1. As we will see, in AgentSpeak, deciding
what to do is achieved by manipulating plans.

The environment that an agent occupies may be physical (in the case of robots
inhabiting the physical world) or a software environment (in the case of a soft-
ware agent inhabiting a computer operating system or network). We think of
decisions about what action to perform being translated into actual actions via
some mechanism external to the agent; usually, this is achieved via some sort of
API. In almost all realistic applications, agents have at best partial control over
their environment. Thus, while they can perform actions that change their envi-
ronment, they cannot in general completely control it. Very often this is because
there will be other agents in the environment, who exhibit control over their part
of the environment.

Apart from being situated in an environment, what other properties do we
expect a rational agent to have? Wooldridge and Jennings [104] argued that agents
should have the following properties:

• autonomy;

• proactiveness;

• reactivity; and

• social ability.

Source: Bordini, Hübner and Wooldridge (2007).

represented by the question mark in the figure. And finally, the actions are carried out

in the environment through the actuators, represented by a pair of feet.

The Definition 8 of Weiss (2013, p. 1) completely defines an agent:

Definition 8 (Agent). An agent is a computational entity, such as software or a robot,

that can act and sense its environment and is autonomous in the sense that its behavior

depends, at least partially, on its own experience. As an intelligent entity, an agent

operates flexibly and rationally in a variety of environmental circumstances given its

actuators and sensors. Behavioral and rational flexibility are achieved by an agent

through fundamental processes such as problem solving, planning, decision making,

and learning. As an interactive entity, an agent can be affected in its activities by other

agents and even by humans. ♢

Multi-agent systems are naturally complex, so they have several characteristics.

In the literature, there are several different ways to characterize them. Also, some

authors propose different nomenclatures, but with similar meanings (WEISS, 2013;

SINGH; HUHNS, 2006). The most complete and adequate characterization for this

work is given by Weiss (2013). In this characterization, multi-agent systems can be

divided into three parts: the agents, the environment, and the interaction between the

agents. Table 7 lists the characteristics of multi-agent systems. From Table 7, it can be

70

48

concluded that multi-agent systems are complex and have several characteristics that

specify them.

Table 7 – Summary of characteristics of multi-agent systems.

Item Characteristic

Agents

fixed or variable number
uniformity homogeneous or heterogeneous
objectives contradictory or complementary
architecture reactive or deliberative
skills simple to advanced

Interaction

frequency low to high
persistence short to long term
information exchange level simple to complex
standard decentralized to hierarchical
variability fixed or variable
purpose competitive to collaborative

Environment

predictability predictable to unpredictable
accessibility unlimited to limited
dynamic static or variable
diversity little to a lot
resource availability restricted to broad

Source: adapted from Weiss (2013).

4.2 METHODOLOGY FOR THE SEARCH FOR PAPERS IN THE LITERATURE

The systematic review carried out in this chapter combines techniques from

three different works, and a methodology adapted to the interest of this work was de-

veloped (KITCHENHAM; CHARTERS, 2007)(PETERSEN et al., 2008) (OKOLI, 2015).

The review was performed according to the following protocol:

1. Determine the search phrase;

• Find keywords related to the topic and combine them with boolean logic (e.g.

control AND discrete event system);

2. Check the search phrase;

• Perform experimental searches in the databases and check the papers to

see if they are related to the topic;

3. Perform the systematic search;

71

49

• Perform the final search and make a list with all articles found;

4. Include works found empirically;

• Add works known by experience, or found by non-systematic searches to

the list;

5. Read the abstracts of all articles in the list;

6. Remove repeated articles & unrelated from the list;

7. Read the articles, which remained in the list, in full;

8. Search on the references of the read articles and repeat items 5, 6 and 7 (once);

9. Write a review based on the read articles.

The phrase should be generalist as the objective of the systematic search is to

map the largest number of related works. The terms that define the most important

characteristics of this work are used, and the tests are carried out in order to verify the

realization of the search phrase. So the following sentence was defined: ((multi AND

agent) OR multiagent) AND "supervisory control" AND ("discrete event system"

OR "discrete event systems") . Note that in search engines, the following phrases

are equivalent: “discrete event system” or “discrete-event system”. Thus, the hyphen

does not influence the search.

From the author’s previous experience in the use of search engines for the area

of interest, it is known that the following engines (which were used to carry out the

search) contain the vast majority of works: IEEExplore; Science Direct; Engineering

Village; SCOPUS.

The search was performed considering the conditions presented, and some in-

formation is presented in Table 8. After merging the works found in each search base

and removing those that appear repeatedly in more than one base, a total of 52 works

were found.

After discarding unrelated articles, 27 articles have remained in the systematic

search. Adding the empirically found articles, in total, 30 articles were analyzed. Some

articles are a continuation of the same work, performed by the same authors, in these

cases, they are considered as one work for counting purposes.

72

50

Table 8 – Information on the process of searching for works in the literature.

Base Search Type Fields Quantity
IEEExplore Advanced Metadata 32
Science Direct Advanced Title, abstract, keywords 7
Engineering Village Quick Search Subject, abstract, keywords 29
SCOPUS Advanced Article title, abstract, keywords 31
Diverse Empiric - 4
Total (excluding repeated and unrelated) 30

Source: designed by the author (2019).

4.3 ANALYSIS ON THE PAPERS FOUND IN THE SEARCH

The first work involving the modeling of multi-agent systems was published by

Hubbard and Caines (1999). Later, the work was extended by Romanovski and Caines

(2003). The technique developed is called multi-agent product, as it is based on a

vector mapping of the models of each agent. In summary, it is a concurrent association

between the automata of each agent, which is similar to the parallel composition of

two automata, with the difference that the execution of the events of each agent is

synchronous and independent of the others. Thereby, while the model of an agent

i transits with the event α, the model of another agent j can transit with the event

β, synchronously. One of the limiting problems of this technique, identified through

this review, is that transitions in the multi-agent product are defined only if there is

a simultaneous transition in all agents. This makes the practical application not very

flexible and very limited because, in addition to making synchronicity between agents

necessary, it is impossible for an agent to be inactive. Subsequently, a supervisory

control method and conditions for distributing supervisors to systems modeled as a

multi-agent product were presented (ROMANOVSKI; CAINES, 2006, 2007).

There are three related works that develop fault-tolerant control techniques for

multi-agent systems (CHO, 2000; CHO; LIM, 2000, 2001). However, the multi-agent

architecture used in these works is based on the synthesis of a local supervisor for

each agent, which is independent of the other agents. Therefore, an architecture or

conditions for the control of a multi-agent system are not presented. They claim that

multi-agent systems differ from decentralized systems in the sense that multi-agent

systems are more autonomous and that agents have little or no intersection in control

objectives. This is an important feature of multi-agent systems.

73

51

The work by Queiroz and Cury (2000) is one of the first works to present a fully

distributed control structure, based on SCT. In this technique, local modular supervi-

sors are obtained, which are synthesized from subsystems of the global plant. The

idea is that the composition of the local modular supervisors should be equivalent to

the monolithic supervisor that would be obtained for the global plant. This technique is

quite widespread in works in the literature. When the global system is on a large scale,

non-conflict testing can be a problem due to the exponential explosion of states. In this

sense, Pena, Cury and Lafortune (2009) propose a method of testing the non-conflict

on abstracted models of the supervisors, which reduces the computational complexity

of the test.

Gordon and Kiriakidis (2000) present ideas about adaptive control of DESs,

which can be applied in multi-agent systems. However, an architecture or conditions for

the control of a multi-agent system are not presented. It is evident that adaptability can

refer to a failure or the connection of a new subsystem. Thus, the connection of a new

subsystem can be explored as the variable number of agents in a multi-agent system.

One problem identified is that the adaptability of the system depends on changes that

need to be modeled. This makes the solution expensive, or with little flexibility.

The work of Hiraishi (2002) proposes an interesting control architecture for mul-

tiagent DESs. The proposed architecture is based on models in tagged Petri nets,

where the tags (or tokens) are models of subsystems (or agents). This architecture

has some important considerations to this thesis that will be discussed here. Agent

events can occur concurrently. The system as a whole is asynchronous and is con-

trolled by several controller agents that can observe and control subsets of events. If

an event is not controllable by a given agent, it can ask other agents to disable that

event. Given the possibility of simultaneous occurrence of events, the technique used

depends on a communication structure to avoid errors due to communication prob-

lems. A similar but centralized control architecture is presented in works by Čapkovič

and Serin (2008) and Čapkovič (2009, 2010).

Wang et al. (2003) present a hierarchical control architecture for multi-agent

DESs. The hierarchy simplifies the control of multi-agent systems because decisions

can be sent to a coordinator. On the other hand, the need for a coordinator reduces

the flexibility of the system.

The strategy adopted in the work by King, Pretty and Gosine (2003) is interesting

74

52

because it allows the control of multi-agent DES to be reconfigurable at runtime. Basi-

cally, an algorithm is proposed that plans the missions of multiple robots online, gen-

erating a model in Petri nets at runtime. This means that if the environment changes,

the robots’ missions can be reconfigured. The work does not make it clear how these

possible changes are passed on to the planner so that it is possible to generate a new

model in Petri nets.

The work of Takai and Ushio (2003) proposes improvements in relation to the

work of Hubbard and Caines (1999). A comparison between the two methods is

demonstrated in a practical application of a manufacturing cell (CHEN; MOREL; RAKOTO-

RAVALONTSALAMA, 2004). The improvement proposed by Takai and Ushio (2003)

is to relax the constraint on the occurrence of simultaneous events, allowing the asyn-

chronous occurrence of events in the subsystems. This is an important characteristic,

because in practical applications of multi-agent systems it is not necessary for the

agents to be synchronized in their actions. The nomenclature of “Concurrent Discrete

Event Systems” is used to show that the system is formed by subsystems whose state

evolution is concurrent, i.e., the evolution of states occurs in parallel and independently

of the other subsystems. Takai and Ushio (2003) propose several mathematical op-

erations for DES competitors, as well as the supervisor synthesis. A disadvantage is

that the supervisor found is monolithic, acting globally, which highlights the need for a

coordinator. Later the method is extended considering the partial observation of events

(TAKAI; USHIO, 2005).

Seow, Ma and Yokoo (2004) propose a technique called multi-agent planning.

In summary, multi-agent planning can be considered as a monolithic supervisor, which

acts in a global way ensuring the desired functioning of the system assuring a non-

blocking behavior. It is a simple technique and does not present advantages in relation

to the other analyzed techniques.

The work by Karimadini, Lin and Lee (2009) demonstrates a different approach

from those presented in the previous paragraph. The approach deals with the super-

visory control of multi-agent systems modeled by non-deterministic automata. This

approach can be interesting depending on how agents are modeled. For example,

given limited communication between agents, some events may be unobservable by

some agents. This could mean non-determinism in transitions of agent models. A

criticism of this work is that the example used is purely mathematical, not illustrating

75

53

a practical application of this technique. Also, although the title emphasizes that the

control is distributed, in reality, a monolithic supervisor is proposed for systems where

the plant has a distributed nature.

Pham and Seow (2012) introduce a consideration of disjunctive alphabets for

the models of each agent, i.e., there are no events in common between the agents.

This consideration allows the global behavior of the system to be modeled by indepen-

dent local models. This solves the problem of modeling multi-agent systems because

if there are events in common, it means that the occurrence of these events is syn-

chronous between all agents, which generates synchronization problems in practical

applications. They also introduce the concept of minimum necessary communication

between agents, whereby only the events involved in the coordination of agents are

communicated between them. The control structure is formed by two layers, with a

lower layer which considers the local goals of the agent, and a higher layer which

solves the coordination between agents.

Cai and Wonham (2010, 2012, 2015) develop an approach called “supervisor

localization”. This approach consists of two steps. Initially, the calculation of the mono-

lithic supervisor on a global plant is performed, which is the synchronous composition

of the agent models. Next, the supervisor is submitted to an algorithm that “localizes”

it, and as an output of this algorithm, the local supervisors for the agents are obtained.

In the first publications of this approach, they proposed that the agents’ alphabets be

disjoint, but with the evolution of the work, this restriction was relaxed. The main ad-

vantage of using this technique is the guarantee of nonblocking and that the language

of the closed-loop system is maximally permissive. In addition, the nonblocking feature

is achieved in the design phase, without the need to carry out a non-conflict test, as

in the local modular approach. Another difference to the local modular approach is

that localized supervisors only disable controllable events from the subsystem where

the supervisor is localized. However, the disadvantage of the supervisor localization

arises when the number of agents is very large, which makes it impossible to obtain

a monolithic supervisor due to the exponential explosion of states. Zhang and Cai

(2016, 2018) continued the work, exploring the partial observation of events between

agents. Cai and Wonham (2014) also explored the same proposal considering the

state tree structure, with the justification that the localization algorithm is more efficient

using this structure.

76

54

Furci, Paoli and Naldi (2013) propose a supervisory control structure applied

to the navigation of autonomous robots in search and rescue tasks. The structure

allows the control to be reconfigured at runtime since in search tasks the environment

is unknown. Therefore, it is desirable that the control be reconfigurable. Still, the

presented control is centralized with a monolithic supervisor. Although it is evident in

the work that the control is designed for multiple agents, the example presented uses

only one agent.

Tatsumoto et al. (2018) demonstrate a multi-agent DES control application. The

control is performed by a monolithic supervisor, but calculated with the limited looka-

head strategy in order to avoid the exponential explosion of states. Although the appli-

cation in the automation of a warehouse with robots is interesting to demonstrate the

control of a multi-agent system, the technique is relatively simple and has no advan-

tages over other techniques.

The first work, in chronological order, within that explored the similarity of DES

applied to the control of modular systems is the work by Rohloff and Lafortune (2006). It

is considered that the models of modules are isomorphic, i.e., their models in automata

have the same shape. A global blocking (non-conflicting) test method is presented,

without the need to compose all modules, avoiding the exponential explosion of states.

Conditions for obtaining local or global supervisors are demonstrated.

The work of Su and Lin (2013) relaxes the isomorphism condition of Rohloff and

Lafortune (2006), and the restriction, in this case, is equality between the alphabets of

the agents. The technique proposes that the control is carried out through local super-

visors for each agent and a global supervisor that governs the behavior of all agents.

It is demonstrated that the language of the global supervisor obtained is not maximally

permissive, and although the language is not maximally permissive, it is evidenced

that there is a gain in flexibility when using this technique. In this case, it is evident

that a task coordinator is needed, from which the global supervisor is executed, and

there would be greater flexibility if there was no need for a coordinator. Two alpha-

bets are used for each agent, one called private and the other global. This strategy

facilitates the structuring of control, as the agents only interact through the global al-

phabet. However, there is the restriction that the local alphabets must be disjoint, i.e.,

there are no conflicts between agents in the execution of local events. Furthermore,

the global alphabet is formed by events that must be executed synchronously by all

77

55

agents, in which case there is also no conflict between agents. Therefore, it is not clear

whether the technique used solves the problem of resource disputes. In the example

used, all events are considered controllable, but it is not clear if the proposed technique

is adequate for alphabets with controllable and uncontrollable events. It can be con-

sidered that the proposed control method is suitable for multi-agent systems with the

purpose of cooperative interaction in the case where there is no dispute for resources.

Therefore, the issue of security in the exchange of information between agents does

not apply.

The work of Liu, Cai and Li (2018, 2019b, 2019a) explores some interesting

features. One of these characteristics is the similarity between agents (homogeneous

multi-agent systems), this allows the modeling of agents to be performed in an identical

way, and thus some assumptions can be made. In this way, scalable supervisors were

proposed that exploit this similarity between agents, and allow the number of agents to

be variable at runtime. Although the variation in the number of agents over the runtime

is a certain type of reconfiguration, there are still other more important issues in the

reconfiguration that must be addressed, such as changing the control specification and

changes to the plant at runtime, which were not explored in their work. Another impor-

tant feature of their work is the distributed implementation, where initially a monolithic

supervisor is calculated and then its location is performed.

The subject of Auer, Dingel and Rudie (2014)’s work is on controlling multi-

threads in concurrent computing. Although the application used in this work is not

related to physical dynamical systems, nor explicitly related to multi-agent systems,

there are ideas that can be explored within the scope of this work. It is noteworthy

that the proposal of this work is based on the theory of supervisory control and the

multi-thread computation structure is similar to the structure of a multi-agent system.

The supervisor’s online calculation is used with the limited-lookahead strategy in order

to avoid the exponential explosion of states. Auer, Dingel and Rudie (2014) solves the

issue of dynamically allocated threads, which, in the scope of this work, is equivalent

to the variable number of agents. The term “concurrent computing” has nothing to do

with the purpose of competitive interaction in the case of multi-agent systems since

concurrent threads indicate a parallel computation that can be performed on different

hardware, instead, threads solve part of a global problem. Therefore, in the work of

Auer, Dingel and Rudie (2014), the issue of security in the exchange of information

78

56

between agents does not apply. The reconfiguration issue does not apply either, be-

cause despite the threads being dynamically created, they are based on the same set

of functions originally determined, as in the case of the example used for the read and

write permission control of threads.

Dulce-Galindo et al. (2019) present a hybrid control structure applied to the nav-

igation of multiple robots. The implementation of control within the scope of SCT is

carried out with local modular supervisors (QUEIROZ; CURY, 2000), however, there is

a centralized algorithm for task assignment. Due to these characteristics, the control

structure is considered decentralized. Although part of the control structure is made up

of algorithms, this work, among the analyzed in this chapter, is the one that presents

the greatest advantages in relation to reconfiguration, since: the number of robots can

vary over time; there may be unknown obstacles in the navigation environment; tasks

can be assigned to robots at runtime. Also, the solution to avoid collisions between

robots in competitive cases is performed through a reactive planner. This reactive

planner is not based on SCT but on mechanical physics, and knowledge of the robot’s

global position is necessary to solve the problem. A disadvantage of the reactive plan-

ner is that its solution is not deterministic, and there is a possibility of not obtaining a

solution due to local minimum.

The work of Dulce-Galindo et al. (2019) is extended in Dulce-Galindo et al.

(2022). They enhance the solution regarding the problem of local minimum in the

previous work. They enhance the control architecture to obtain a scalable solution

regarding the number of CAVs. The structure of control regarding the reactive and de-

liberative planners is very similar to the previous work. The architecture is solved in two

structures, in a centralized structure, and in a distributed structure. In both cases the

task assignment is made by a scheduler, which is in an infrastructure. The difference

is that in the distributed structure, the scheduler is considered as an agent aside to the

robots and therefore the control is distributed and embedded in each agent.

4.4 DISCUSSION

A discussion is made on the works found in the literature considering the three

aspects (distributed, scalable and reconfigurable), which are important to show the

originality of the thesis proposal of this work.

The first aspect refers to the implementation of the control architecture of the

79

57

solutions found, which can be centralized, decentralized, or distributed. The second

aspect refers to the purpose of interaction in multi-agent systems, which can be com-

petitive or collaborative. And, the third aspect is the possibility of reconfiguration of the

control system, which can be performed manually (offline) or Automaticlly (at runtime).

In Table 9 a classification is made on the solutions analyzed in this chapter, re-

garding the four characteristics: Structure, Scalable, Reconfigurable and Interaction. It

is important to analyze the interaction characteristic of the control solutions, because

due to the competitive nature of CAVs, collaborative control solutions are not applica-

ble. It is important to note that the purpose of interaction (collaborative or competitive)

is not explicited in the literature, making it difficult to find a search phrase which ex-

cludes works focused in collaborative interaction.

Figure 17 shows a bubble chart, summarizing the number of works found with

the characteristics analyzed.

Figure 17 – Bubble chart, where the characteristics of the works found in the literature
are summarized.

A
u
to
m
at
ic

M
an

u
al

Centralized

Decentralized

Distributed

2

2

1

9

4

13

C
om

p
et
it
iv
e

C
o
la
b
or
at
iv
e

Ce
ntr

ali
zedDe

cen
tra

liz
edDi

str
ibu

ted
11

5

3

1

11

Au
tom

ati
c

M
an
ua
l Competitive

Colaborative

3

16

2

10

Source: designed by the author (2019).

The analysis on the bubble graph of Figure 17 is made considering two aspects

at a time. It is possible to observe that the largest number of works found (16 works),

are the works that present a centralized architecture for collaborative multi-agent sys-

tems, without reconfiguration at runtime. In descending sequence, 13 works present a

80

58

Table 9 – Comparison of solutions on control of DES, regarding the four
characteristics: Structure, Scalable, Reconfigurable and Interaction

Work Structure Scalable Reconf. Interaction
Hubbard and Caines (1999) Decentralized No Manual Collab.
Cho (2000), Distributed No Manual Collab.
Gordon and Kiriakidis (2000) Decentralized No Automatic Collab.
Cho and Lim (2000) Distributed No Manual Collab.
Cho and Lim (2001) Distributed No Manual Collab.
Hiraishi (2002) Decentralized No Manual Collab.
Wang et al. (2003) Decentralized No Manual Collab.
King, Pretty and Gosine (2003) Centralized No Automatic Collab.
Romanovski and Caines (2003) Decentralized No Manual Collab.
Takai and Ushio (2003) Centralized No Manual Collab.
Chen, Morel and Rakoto-
Ravalontsalama (2004) Centralized No Manual Collab.

Seow, Ma and Yokoo (2004) Centralized No Manual Collab.
Takai and Ushio (2005) Centralized No Manual Collab.
Romanovski and Caines (2006) Distributed No Manual Compet.
Rohloff and Lafortune (2006) Distributed No Manual Compet.
Romanovski and Caines (2007) Distributed No Manual Compet.
Čapkovič and Serin (2008) Centralized No Manual Collab.
Čapkovič (2009) Centralized No Manual Collab.
Karimadini, Lin and Lee (2009) Centralized No Manual Collab.
Čapkovič (2010) Centralized No Manual Collab.
Pham and Seow (2012) Distributed No Manual Compet.
Cai and Wonham (2012) Distributed No Manual Compet.
Furci, Paoli and Naldi (2013) Centralized No Automatic Collab.
Su and Lin (2013) Distributed No Manual Compet.
Cai and Wonham (2014) Distributed No Manual Compet.
Cai and Wonham (2015) Distributed No Manual Compet.
Tatsumoto et al. (2018) Centralized No Manual Collab.
Liu, Cai and Li (2018) Distributed Yes Manual Compet.
Liu, Cai and Li (2019a) Distributed Yes Manual Compet.
Dulce-Galindo et al. (2019) Decentralized No Automatic Compet.
Dulce-Galindo et al. (2022) Distributed Yes Automatic Compet.

distributed structure without reconfiguration at runtime. We have found 11 works with

distributed structure and competitive interaction; and 11 works with centralized struc-

ture with collaborative interaction. This is an evidence that collaborative interactions

are most suitable to be coordinated by a central element, and competitive interactions

are most suitable to be coordinated by themselves (distributed).

Finally, observing the graph in Figure 17, it is possible to state that only one work

was found presenting a control system with a distributed structure, with scalability and

automatic reconfiguration at runtime. Furthermore, most control systems are adequate

81

59

for collaborative multi-agent systems, which are not adequate for CAVs systems. This

evidences the originality of the proposal of this work.

Considering the objectives of this thesis, the work of Dulce-Galindo et al. (2022)

can be considered the only work found in the literature, which contemplates the solution

to the three features of interest in this thesis: Distributed, Scalable and Reconfigurable.

Comparing the scalability in both works, the proposal differs in the application.

In the work of Dulce-Galindo et al. (2022), the application is for autonomous robots in a

determinate environment, such as warehouses and manufacturing industries. In these

environments, the scale of the system is usually about dozens to hundreds robots, in

an area from 1000 to 10000 square meters. With this application, it is adequate the

use of a coordinator (scheduler). In this thesis, the application is for CAVs in urban en-

vironments which has a scale of thousands to millions of vehicles in areas up to 10000

square meters. In this application, the use of a coordinator within an infrastructure is

unfeasible due to the number of vehicles and the size of the environment. An objective

comparison between both works is made in Table 10, to show some differences.

Table 10 – Comparison of the solutions proposed in this thesis and by Dulce-Galindo
et al. (2022).

Characteristic This thesis Dulce-Galindo et al. (2022)
Structure Distributed Distributed
Scalability At runtime At runtime
Reconfiguration At runtime At runtime
Modeling Map based Orientation based
Infrastructure Not needed Needed
Environment Known Partially Known

Source: designed by the author (2022).

82

60

5 CONTROL ARCHITECTURE

In this chapter we propose a distributed, scalable and reconfigurable control

architecture for CAVs, ensuring the nonblocking and collision-free behavior. The ar-

chitecture can be applied to solve problems such as dynamic path planning, multiple

intersections management, roundabouts management and road merging.

To solve the exponential growth of states problem, it is proposed that the control

be synthesized in a fully distributed way. For this to be possible, the characteristics of

similarity between CAVs are explored, avoiding the composition of a global plant. The

blocking and collision between CAVs problems would be easily solved by calculating

a monolithic supervisor over the global plant, however, this method is not feasible to

implement in this context. For the problem of collision between CAVs, it is proposed that

the CAVs have the control action of disabling events of other CAVs. For the blocking

problem, in order to avoid the costly verification of blocking, it is proposed that an

alternative path be recalculated for each blocked agent, with the temporary removal of

blocked paths. In this way, a new controller is computed at runtime, creating a control

alternative that is nonblocking. For this, some necessary and sufficient conditions for

the plant model (map) of the CAVs are defined.

Part of the proposed solution was inspired by the TCP networking protocol, in

which there is a timeout to resend a packet. This means that not always a packet will

be received, and when it is not received, after a while, it is resent. Note that there is

no sophisticated method which identifies why the packet was lost or where it was lost,

nor the infrastructure is robust enough to never lose a packet. The solution is simple,

the sender just waits for confirmation, and if the acknowledgement is not received, the

packet is sent again. It is not the most efficient use of the network, but the package

loss rate is too low to justify a sophisticated solution. The inspiration was to look at the

path (packet) of a CAV in such a way that it can be re-traced (resent), when a blocking

(packet loss) occur.

5.1 PRELIMINARIES

In this section, some concepts and definitions are presented, in order to facilitate

the understanding of the chapter. In the next paragraph, we summarize some common

83

61

concepts and definitions. Then, we present the relabeling function, the concept of cir-

cular accessible state & automaton, and the concept of reconfigurable multitask DES,

all of them developed in the context of this thesis.

To be more convenient to the reader, we recall a summary of the definitions

stated in Chapter 2. The finite set of events is called Σ. |Σ| denotes the number of

elements in Σ, and is valid for any kind of set. A string is a finite-length sequence

of events in Σ. Given a string s, its length, i.e., number of events including repeti-

tions is denoted by ∥s∥. The set of all strings formed by events in Σ is denoted by

Σ∗. Any subset of Σ∗ is called a language over Σ. Let L be a language over Σ. The

prefix-closure of L is denoted by L. The notation Σa = Σb \ Σc, means that Σa is

formed by all elements of Σb which are not contained in Σc. An automaton is a six-tuple

G = (Q,Σ, δ,Γ, q0, Qm), where Q is the set of states, Σ is the finite set of events, δ:

Q × Σ → Q is the partial transition function, Γ is the active event function, q0 is the

initial state, and Qm is the marked state set. δ is extended such that δ: Q × Σ∗ → Q.

The accessible part of G with respect to q is Ac(G, q) = (Qac,Σ, δac,Γac, q, Qmac), where

Qac = {q′ ∈ Q : (∃s ∈ Σ∗)(δ(q, s) = q′ is defined)}, and δac = δ|Qac×Σ→Qac. The coacces-

sible part of G with respect to q is CoAc(G, q) = (Qcoac,Σ, δcoac,Γcoac, q0oac , Qm), where

Qcoac = {q ∈ Q : (∃s ∈ Σ∗)(δ(q, s) ∈ Qm}; q0oac = q, if q ∈ Qcoac,undefined otherwise;

and δcoac = δ|Qcoac×Σ→Qcoac . The trim part of G with respect to q is obtained by com-

puting both accessible and coaccessible parts. L(G) represents all physically possible

behavior of an automaton G, and Lm(G) represents the behavior of G in which tasks

are completed. L(G, q) and Lm(G, q) represent, respectively, the language and the

marked language of G starting from state q.

In order to represent a modular DES in which the subsystems models have a

similar structure, we introduce a labeling function. Consider a labeling function Ri :

Σ → Σi with a biunivocal relation for every σ ∈ Σ, such that |Σ| = |Σi| and Ri(σ) = σi

for σi ∈ Σi; and R−1
i (σi) = σ; where i ∈ N. Note that Ri(σ) ̸= Rj(σ), however R−1

i (σi) =

R−1
j (σj), for i ̸= j.

We extend this function to languages & strings; and, state sets & states. We

also extend this function to automata, by applying it individually for each tuple, i.e., for

G = (Q,Σ, δ,Γ, q0, Qm):

Ri(G) = (Ri(Q), Ri(Σ), Ri(δ), Ri(Γ), Ri(q0), Ri(Qm)), (5.1)

84

62

where Ri(δ) : Ri(Q)×Ri(Σ) → Ri(Q), and Ri(Γ) : Ri(Q) → Ri(Σ).

The concept of blocking means at least one CAV would be stuck, i.e., unable to

achieve its destination (marked state). In the automata model, G is nonblocking when

Lm(G) = L(G) (CASSANDRAS; LAFORTUNE, 2021).

Next, we present the definitions of circular accessible state and automaton, in

terms of DES, which are useful for the solution proposed in Section 5.2. It is important

to note that this definition is different to the strongly connected automaton, which does

not satisfies the requirements for the solution.

Definition 9 (Circular Accessible State). A state qx ∈ Q is said to be circularly accessi-

ble if ∀qy ∈ Q, with qy ̸= qx, ∃sx, sy ∈ Σ∗, with sx = σx1σx2 . . . σxm , and sy = σy1σy2 . . . σyn

such that the following hold:

i) δ(qy, sy) = qx and δ(qx, sx) = qy; and

ii) δ(qy, σy1) = qy2 , δ(qy2 , σy2) = qy3 , . . . , δ(qyn , σyn) = qx, δ(qx, σx1) = qx2 , δ(qx2 , σx2) =

qx3 , . . . , δ(qxm , σxm) = qy; and

iii) qy ̸= qy2 ̸= . . . ̸= qyn ̸= qx ̸= qx2 ̸= . . . ̸= qxm. ♢

In words, a state qx is circularly accessible if for all state qy of the automaton

there is a closed path, which passes through qy and returns to qx, without visiting any

state more than once.

Definition 10 (Circular Accessible Automaton). An automaton G = (Q,Σ, δ,Γ, q0, Qm)

is said to be circularly accessible if ∀q ∈ Q, q is circular accessible. ♢

For the illustration of the circular accessibility, consider the automaton F in Fig-

ure 18a, in which all states are circularly accessible, therefore, F is circularly acces-

sible. Now, consider the automaton H in Figure 18b, state W does not fulfill the con-

ditions for H to be circularly accessible, since all paths from state X to state W pass

through state Y , and all paths from state W to X pass through the same state Y .

Queiroz, Cury and Wonham (2005) proposed a notion of multitasking DES. This

notion is extended in Queiroz and Cury (2005), in which each module has its task and

the tasks may be accomplished asynchronously, i.e., not at the same time. A task is

defined as an objective of the control system, and therefore, a multitasking system,

with different classes of tasks, has multiple distinct objectives.

85

63

Figure 18 – Examples of (a) circular accessible automaton F and (b) non-circular
accessible automaton H.

X

Y

Z

c

bb

a

(a)

X

Y

Z

Wc

b

d

e

b

a

(b)
Source: designed by the author (2022).

We extend this notion of multitasking in Definition 11 by considering that the

agent (module) receives a new, different task after the accomplishment of the current

task.

Definition 11 (RMTDES). A DES is called a Reconfigurable Multitasking Discrete

Event System if it has the following properties: (i) it is composed of two or more concur-

rent subsystems that have independent classes of tasks; and (ii) the initial and marked

states of each subsystem may be instantly modified. ♢

It is important to note that multitasking means that the tasks of different subsys-

tems do not need to be accomplished at the same time.

Queiroz, Cury and Wonham (2005), and Queiroz and Cury (2005) introduced

the Colored Marking Automaton as a model that distinguishes classes of tasks in DES.

The colored marking intends to distinguish different classes in a monolithic system. In

our work, each class of task is biunivocally associated with each subsystem, and in our

method, we do not compose the subsystems model, therefore, there is no need to use

a label to represent different classes of tasks.

An example is provided in Figure 19 to illustrate the concept of RMTDES. In the

initial instant t1 = 0 (Figure 19a), the subsystem F1 has Y1 as its marked state and

subsystem F2 has Z2 as marked state. In the second time instant t2 > t1 (Figure 19b),

the subsystem F2 has completed its task and received a new one with Y2 as its marked

state. Observe that when a subsystem receives a new task, both initial and marked

states change. In the third time instant t3 > t2 (Figure 19c), the subsystem F1 has

completed its task and received a new one with Z1 as its marked state.

86

64

Figure 19 – Illustration of automata of RMTDES system F, formed by F1 = R1(F) and
F2 = R2(F). Three different instants of time are shown: (a) time t1 = 0; (b)

time t2 > t1; and (c) time t3 > t2.

X1

Y1

Z1

c 1

b 1b 1

a
1

X2

Y2

Z2

c 2

b 2b 2

a
2

(a)

X1

Y1

Z1

c 1

b 1b 1

a
1

X2

Y2

Z2

c 2

b 2b 2

a
2

(b)

X1

Y1

Z1

c 1

b 1b 1

a
1

X2

Y2

Z2

c 2

b 2b 2

a
2

(c)
Source: designed by the author (2022).

5.2 CONTROL ARCHITECTURE

In this section, we present the proposed architecture for the distributed control

of multi-CAVs systems based on RMTDES. The control is distributed and embedded

in each CAV, where the control actions are made, considering the information sent by

other CAVs.

Given a multi-CAV system, a CAV is denoted by cavi with i = 1, 2, 3, . . . , n; where

n represents the number of active CAVs. The controlled behavior of cavi is represented

by three automata models, a local plant Gi, a path controller Cpai, and a coordination

controller Ccoi. The proposed architecture is shown in Figure 20 with two CAVs, de-

noted by cav1 and cav2. This architecture is based on the framework of Ramadge and

Wonham (1989), in which Gi represents the local plant and Cpai acts as a local super-

visor, observing events generated by Gi and disabling controllable events for Gi. The

controller Ccoi acts as a supervisor who observes events generated by Gi and disables

87

65

controllable events of other CAVs plants. Thus, the local plant Gi receives the union of

disablings from Cpai and Cco of other CAVs.

Figure 20 – Control structure for a multi-CAV system.

Cco1

Cpa1

G1

∪

R1

Σ1

disablings D1↑
imposed by cav1 disablings

received by
cav1

D1↓

Cco2

Cpa2

G2

∪

R2

Σ2

disablings D2↑
imposed by cav2 disablings

received by
cav2

D2↓

Source: designed by the author (2022).

The local plant model of a CAV is based on the map, modeled as an automaton.

The states represent regions in space and transitions represent movement between

regions. The path controller is responsible for the control actions concerning the desti-

nation of the CAV. The specifications for the path controller are individual for each CAV.

The coordination controller is responsible for the control actions which avoid collisions

with other CAVs. The specifications for the coordination controller are individual for

each CAV, however, they are based on a common rule for all CAVs which provides the

same level of priority for all CAVs in the coordination.

We propose the use of modular RMTDES for the modeling of a multi-CAV sys-

tem, in which, each CAV has its automaton model, and may be considered a module

of the whole system. We assume that all events are controllable, but we foresee that

uncontrollable events could be included in the model of this architecture. We also con-

sider that two or more events cannot occur at the same instant of time (in terms of

implementation).

Consider a directed graph RG = (Q,Σ, δ,Γ), called root graph, which represents

the map model, and the generator Gi = (Qi,Σi, δi,Γi, q0i, Qmi), which is the local plant

for cavi, where Qi = Ri(Q), Σi = Ri(Σ), δi = Ri(δ) and Γi = Ri(Γ). This means that Gi

has the same state transition structure based on the RG, but could have different initial

88

66

and marked states (CAI; WONHAM, 2012). The model of the Gi for each CAV has its

states and events labeled by its index. In other words, two events with the same name,

but different indexes, represent the same action but are executed by different CAVs.

We explore the map sharing between CAVs, which allows us to simplify the dis-

tribution of the control, without the need of obtaining a single (monolithic) model which

describes the global behavior of the system. When the same map (i.e. geomorphic

automata models) is used, each CAV knows intrinsically all possible paths. In other

words, CAVs share the same resources and it is necessary to handle the resource

dispute.

It is important to observe that, if there is only one CAV in operation, its actions

are ruled by the path controller Cpai, and there are no restrictions (no disabled events)

imposed by any other CAV’s coordination controller. Yet, if there are several CAVs in

operation, and they do not cross paths, the coordination controller of one CAV does

not have any effect on other CAVs, and their operation is ruled solely by their path

controllers.

The coordination controller guarantees a collision-free behavior in resource dis-

pute between CAVs, however, to avoid conflicts a CAV may be blocked. In other words,

all events of a CAV’s path may be disabled, causing it to be blocked. Thus, the concept

of momentary blocking is proposed in Definition 12. This new concept of blocking is

called momentary as it is solved by the reconfiguration of the controllers in runtime.

Definition 12 (Momentary Blocking). Occurs when the evolution of states in the cur-

rent path is momentarily blocked due to the disabled events imposed by other CAVs,

requiring the computation of a new path. ♢

The solution to momentary blocking is given in Section 5.2.1.

5.2.1 Reconfigurable Structure

The flowchart in Figure 21 represents the CAV’s internal operation, in which

the reconfiguration and the momentary blocking solution are given. The embedded

reconfiguration procedure makes it possible for each agent to receive a new destination

when the path is finished, or when the current path is interrupted. The momentary

blocking solution makes use of the reconfiguration to recalculate the path of the CAV.

89

67

Figure 21 – Flowchart of a CAV’s internal operation.

(re)configuration (RMTDES) solution of momentary blocking

control execution

start
1

wait
new Qmi 2

check Di↓
& compute
Ki(Qmi

)
3

Ki

empty?
4

compute
Cpai & Ccoi

5

Q′
mi

=
{states

within one
transition
ahead}

10

check Di↓
& compute
Ki(Q

′
mi
)

11

Ki

empty?
12

compute
Cpai & Ccoi

13

check Di↓
14

momentary
blocking?

15

update Di↑
& execute
one control

action 16

check Di↓
6

finish or
quit?

9

momentary
blocking?

7

update Di↑
& execute
one control

action 8

Interruptions:

• Di↓ is received on demand:

receive
Di↓ 18

wait for
external
interrupt

17

• Di↑ is sent periodically:

broadcast
Di↑ 20

wait for
a period

(e.g. 1 ms)
19

no

yes

no

yes

yes

no

yes

no yes

no

Source: designed by the author (2022).

Note that all blocks are numbered to better understand the function of the flowchart.

Also, note the interruptions at the bottom of the flowchart. The disablings from other

90

68

CAVs are received instantly at block 18, by demand, and stored in the memory of cavi

for consultation. The disablings sent by cavi are updated in the flowchart, however,

they are being cyclically sent over a period of time at block 20.

From block 1, the flow starts. At block 2, the CAV receives an input (operator or

passenger) of the destination Qmi
.

At block 3, the disablings for cavi Di↓ are checked in the memory. Then, the

specification for the path controller (Ki) is computed accordingly to Algorithm 1, in

Section 5.2.2. At block 4, a verification of the existence of Ki is made, if it is empty,

it means that the CAV is momentarily blocked. If Ki is not empty, the path and co-

ordination controllers (Cpai & Ccoi) are computed at block 5. At block 6, the received

disablings are checked, and in sequence, the momentary blocking condition is checked

at block 7.

Formally, cavi is momentarily blocked when:

Γpai(qi) ⊆ Di↓, (5.2)

where qi is the current state of the cavi. This means that all feasible events in the

current state of the closed loop behavior are disabled by other CAVs.

If the cavi is not momentarily blocked, going to block 8, the disablings cyclically

sent to other CAVs are updated and the control action (transition of state) is executed.

At block 9, it is checked if the path is finished or if the operator/passenger has inter-

rupted the path. If not, the flow goes again to block 6. If the path is finished/interrupted

at block 9, then the process starts again by receiving a new destination (marked state)

at block 2.

Going back to block 7, if the cavi is momentarily blocked, a new path is com-

puted flowing to block 3, in which all possible paths from the cavi’s current state to the

destination state are computed, excluding the paths which contain events momentarily

disabled by other CAVs.

Going back to block 4, in most cases, the specification Ki is not empty. It will be

empty in two specific situations:

• The CAV is in the imminence of reaching its destination, but it is occupied;

• The CAV is surrounded by other CAVs, making it impossible to move in any di-

91

69

rection.

In the first case, a relaxation is made regarding the shortest path. It is allowed

that the CAV may move one transition ahead in any direction, as long as it is not

disabled (block 10). This action is needed to avoid CAVs to remain blocked in the case

of two or more CAVs wanting to occupy each other positions as their final destinations.

In other words, it is a dispersion in the case of two or more CAVs in the imminence of

reaching their destinations, but they are respectively occupied by other CAV. A solution

to this case is illustrated in Section 6.1.2.

In the second case, the momentary blocking solution keeps trying to recompute

its path until at least one adjacent state is freed (blocks 11 and 12).

The part of the flowchart regarding the dispersion starts by marking all states of

Ki within one transition ahead of the current state of the CAV, at block 10. The set of

marked states within one transition ahead is denominated Q′
mi

. In the sequence, the

disablings Di↓ are checked and the specification of the path controller with regard to

Q′
mi

(i.e., Ki(Q
′
mi
)) is computed (Algorithm 1). In the following, the emptiness of Ki is

checked (block 12). If it is empty, the flow comes back to block 11, checks for changes

in Di↓, and recomputes Ki, and this cycle continues until an adjacent state is freed.

If the path controller is not empty (block 12), the path and coordination controllers are

computed (block 13); and the disablings Di↓ are checked (block 14).

At this point, the momentary blocking is checked again at block 15 to assure the

collision-free control action. If there is no momentary blocking, it means there is a path

available, then the flow goes to block 16 to finally update Di↑ and execute one control

action (transition). After this, the specification and the path controller are recalculated

normally with the original (desired) destination Qmi
(block 3). If there is a momentary

blocking at block 15, it means there is a change since the execution of block 11 and

there is no path available anymore; then, the flow goes back to block 11.

5.2.2 Path Controller Specification

The specification for the path controller (Ki) is computed as follows. First, the

enabled event set is calculated:

Σ′
i = Σi \Di↓, (5.3)

92

70

where Di↓ is the union of all disabled events received by cavi from other CAVs, given

by:

Di↓ = Ri

({
n⋃

j=1

Dj↑ : j ̸= i

})
, (5.4)

where Dj↑ is the event set of disabled events published by cavj and n is the number of

CAVs in the range of communication of cavi.

The computation of Ki considers the current state as the initial state. It is shown

in Algorithm 1. It receives the root graph RG, disablings for cavi, current state, and

marked states for cavi as inputs. In the output, it generates the control specification

automaton Ki. In lines 1, 2, and 3, the state set, transition function, and event active

function of Ki are defined, respectively, as a relabeling of these functions from RG. In

line 4, the alphabet of Ki is defined as the enabled events for cavi. In lines 5 to 8, the

disabled events are removed from Γ′
i and δ′i, considering the current state of cavi. Note

that only the transitions with disabled events which are active in the current state of

cavi are removed from Ki. In line 9, an auxiliary automaton is defined; and in line 10,

Ki is computed through the Trim operation of the auxiliary automaton.

Algorithm 1: Computation of Ki.
Input: RG = (Q, Σ, δ, Γ), Di↓, qi, Qmi

Output: Ki

1 Q′
i := Ri(Q);

2 δ′i := Ri(δ);
3 Γ′

i := Ri(Γ);
4 Σ′

i := Ri(Σ) \Di↓;
5 for each d ∈ Di↓ ∩ Γ′

i(qi) do
6 remove d from Γ′

i(qi);
7 δ′i(qi, d) := not defined;

8 Yi := (Q′
i,Σ

′
i, δ

′
i,Γ

′
i, qi, Qmi

);
9 Ki := Trim(Yi);

5.2.3 Path Controller

The path controller Cpai : L(Gi) → 2Σi, embedded in each CAV, is responsible

for controlling the CAV to execute the computed path. The event set of the path con-

93

71

troller is equal to the plant’s local event set Σi. Its input is the set of events generated

by the local plant (Gi), and its output is the set of disabled events for Gi, regarding its

local path.

The synthesis of Cpai is embedded in the agent, given in Algorithm 2. This algo-

rithm receives automaton Ki which is the control specification for the path, considering

the disablings imposed by other CAVs. The dijkstra function receives the specification

and returns an automaton Cpai with all feasible shortest paths, i.e., LCpai
= Lsp (Defi-

nition 13). The Dijkstra algorithm is well known in the literature and it is not explained

here. It is important to note that any optimization algorithm can be used instead of

Dijkstra’s.

Algorithm 2: Computation of Cpai.
Input: Ki

Output: Cpai

1 Cpai := Dijkstra(Ki);

The optimization algorithm used in the path controller guarantees the computa-

tion of all shortest paths available in Ki, regarding the marked state (CAVs destination).

In the implementation of the path controller, its control actions execute one of the short-

est paths, considering the dynamism of the available paths at the moment.

The path controller guarantees the nonblocking of the own CAV’s actions w.r.t.

its own path, considering it as an independent monolithic system; i.e., if the CAV is

alone in the environment, it will never be blocked.

The shortest feasible paths for each state of Cpai are given by Definition 13.

The marked language of Cpai can be defined as Lm(Cpai) = Lsp(q0). It means all

equally distant shortest path alternatives are considered in the language, resulting in a

maximally permissive language.

Definition 13 (Shortest Path Language). Given the specification automaton Ki, and

considering a path starting in a state q and finishing in qm ∈ Qm, with |Qm| = 1, then, the

shortest path language Lsp(q) = {ssp : ssp ∈ Lm(Ki, q), ∥ssp∥ ≤ ∥s∥, ∀s ∈ Lm(Ki, q)}.

♢

Given the possibility of recomputation of Cpai at runtime, there is no need to

94

72

verify the global blocking (of all CAVs) at the project phase. In other words, there is

no need to synthesize a monolithic supervisor to verify the existence of any blocking,

whereas, if at least one CAV is momentarily blocked (given that there is no coordinator),

the blocked CAVs themselves will reconfigure, independently, their path controllers as

shown in Section 5.2.1.

5.2.4 Coordination Controller

The coordination controller Ccoi : L(Gi) → 2Σ, embedded in each CAV, rules

the interactions between CAVs. Its function is to disable events of other CAVs to avoid

conflicts in the dispute over resources. The coordination controller’s event set Σco1 is

the union of the vehicle’s local event set and the non-labeled event set, i.e., Σco1 = Σi∪
Σ. The events to be disabled are in the Σ event set, which may represent events of any

vehicle after the relabeling Ri. This allows the distributed synthesis of the coordination

controller, without the need to compose the CAVs’ models. Thereby, disabling an event

e from Σ is equivalent to disable the events in the set {ej : j ∈ N and j ̸= i}, for the

agents which are in the communication’s reach area.

The computation of Ccoi is made through Algorithm 3. The root graph and the

path controller automaton are received as input for this algorithm. In lines 1 to 4, the

set of events to be disabled in each state of Ccoi is computed. In lines 5 to 9, the states

set, events set, transition function, initial state, and destination state of Ccoi are defined

as a copy from Cpai. In lines 10 to 13, the set of active events for each state of Ccoi is

defined as the union of the active events of the respective state in Cpai and self-loops

of the allowed events in Σ for other CAVs. In line 14, Ccoi tuples are specified with the

variables computed in the algorithms.

Basically, Ccoi is an automaton obtained from the copy of Cpai, adding to each

of its states qi, self-loops with all Σ events that, in RG, do not lead from any state to the

state R−1(qi). Thus, Ccoi acts to disable, in the other CAVs, the events that would lead

them to the current state of cavi.

The events disabled by cavi (Di↑) are imposed to other CAVs through the output

of this controller, which are broadcast through the communication interface. Di↑ is

calculated as follows:

Di↑(qi) ={e ∈ Σ : δ(q′, e) = q is defined, where q, q′ ∈ Q and q = R−1
i (qi)}, (5.5)

95

73

Algorithm 3: Computation of Ccoi.
Input: RG, Cpai

Output: Ccoi, Di↑
1 for each state q′ ∈ Q do
2 for each state q ∈ Q do
3 for each event e ∈ Γ(q′) s.t. δ(q′, e) = q do
4 Di↑(Ri(q)) := Di↑(Ri(q))∪{e};

5 Qcoi := Qpai;
6 Σcoi := Σi ∪ Σ;
7 δcoi := δpai;
8 q0|coi := q0|pai;
9 Qm|coi := Qm|pai;

10 for each state qi ∈ Qcoi do
11 for each event d ∈ Σ \Di↑(qi) do
12 δcoi(qi, d) := qi;

13 Γcoi(qi) := Γpai(qi) ∪ Σ \Di↑(qi);

14 Ccoi := (Qcoi ,Σcoi , δcoi ,Γcoi , q0|coi , Qm|coi);

in which qi is the current state of cavi. It is important to note that e, q′, q, δ, Q and Σ are

from RG. Another observation is that Di↑ is mapped for states in Qi, however Di↑ ⊂ Σ.

Any other vehicle may receive the command to disable some events, but only

CAVs in a potential collision are affected. Thus, the path is private to each CAV. Also,

the current position and the actions of a CAV are not informed to other CAVs. This

characteristic is important considering that malicious CAVs (or other malicious agents)

could take advantage of the information of other CAVs’ paths.

5.2.5 Conditions for the Solution

Considering the problem statement and the assumptions in Section 1.4, we

present how the statements were fulfilled and the conditions for it.

Statement (S1) is fulfilled by disabling other CAVs events, inhibiting undesired

movements, and assuring a collision-free behavior. In practice, this is supported by

assumption (A7).

Regarding statement (S2), there is a maximum number of CAVs concerning the

size of the map (number of states in the model), in which it is possible to find a solution,

which is given by Theorem 1.

Theorem 1 (Number of CAVs). Consider: (i) a circular accessible automaton G which

96

74

represents a map for multiple CAVs; (ii) a system with n CAVs, with Gi in closed-loop

with the controllers Cpai and Ccoi (calculated as in Algorithm 2 and 3, respectively) with

the structure shown in Figure 20 under the logic of the flowchart in Figure 21. Then,

statement (S2) will hold under the assumptions (A1) to (A8) iff the maximum number

of CAVs in the system is smaller than the number of states in G, i.e., nmax < |Q|.

Proof. It is trivial that if nmax = |Q| all CAVs would be blocked and (S2) would not

hold. Thus, it is necessary that nmax < |Q| for (S2) to be satisfied. It remains then to

prove sufficiency. Note that if nmax < |Q| then there will always be at least one free

state. Since that G is circularly accessible, if there exists one free state, and one

CAV moves to this free state, it would free-up one state which can be occupied by

another CAV, and so on. As the CAVs recalculate their routes using free states, all the

surrounding CAVs would dispute this free state, which prevents the same vehicle from

going back and forth to this free state. Thus, CAVs may move at least one state at a

time, as long as there exists at least one free state. Furthermore, since automaton G

is circularly accessible, all states are reachable for any CAV in this situation of moving

one state at a time. As one CAV reaches its marked state, a different marked state is

attributed to it, forcing it to move, and therefore all CAVs eventually reach their marked

state. In the case of all marked states being occupied by other CAVs, the execution of

the flowchart in Figure 21 forces the CAV to move to a free state, avoiding the blocking

of the system.

In other words, as long as there is a free state, there is a path that leads CAVs

to their destination states. However, a multi-CAV system with the maximum number of

CAVs does not have an efficient solution. To obtain an efficient solution, it is adequate

that the number of CAVs be much smaller than the number of states, i.e., n ≪ |Q|,
which is a realistic scenario.

Statement (S3) is achieved through an optimization algorithm in the calculation

of Cpai. Statement (S4) is achieved by the sharing of disablings instead of its path.

Statement (S5) is achieved as the models of the whole system are not composed;

assumption (A4) supports this achievement.

Statements (S6) and (S7) are achieved by the generalization of the events dis-

abling. In other words, the only communication between CAVs is broadcasting the

disablings. In other words, it does not matter: from which CAV and from how many

97

75

CAVs the disablings are coming; nor for which CAV and for how many CAVS the dis-

ablings are sent.

5.3 ABSTRACTING THE SPEED OF CAVS IN IMPLEMENTATION

Discrete path planning is a well-known method in the literature (MAHULEA;

KLOETZER; GONZÁLEZ, 2020). Generally discrete paths are represented by oriented

graphs, or automata as in this work. One of the main advantages of the representation

as an oriented graph is that it allows the use of optimization algorithms (e.g. Dijkstra

algorithm) to find the shortest path between two nodes.

In theory, the transition of the CAVs between states is considered as instanta-

neous, and the size of the robot is considered to be a point in space. However, in

practice the transition is not instantaneous and the size of the robot is not a point. This

leads to an implementation problem, which could cause collisions between CAVs, if

not treated. Thus, the size and speed of the CAV must be considered in order to avoid

collisions in CAVs systems.

The aim of discrete path planning is to abstract the physics of the vehicle, such

as size, speed and acceleration. So, if the transition between two states A and B is

considered as instantaneous at the time of the decision, the Ccoi will be disabling the

events for B state, but physically, the CAV is still in the state A.

If the transition between these states A and B is considered as instantaneous

at the time that the CAV is arriving at state B, the Ccoi will be disabling the events for A

state, but physically, the CAV will be very close to state B. In both cases collision could

occur as Ccoi would be disabling the “wrong” events.

One solution is to calculate the future position in function of speed and size in

order to determine which CAV has the preference of occupying a state. However, this

solution requires a continuous state-space modeling with a considerable computational

effort which depends on the speed sensor. In other words, this would be a whole control

technique, and, if combined with the proposed architecture would turn the solution into

a complex task.

Thus, we have developed a very simple technique to abstract the speed of the

CAV in the implementation. Basically, the transition will occur in two steps, a logical

transition and a physical transition. The logical transition occurs as in theory: instanta-

neous. And the physical transition depends on the physical position of the CAV.

98

76

To better understand, we can visualize two identical control structures imple-

mented, which represents the “logical” and “physical” models. The states in the logical

automata represent the logical position of the CAV, and the state in the “physical” au-

tomata represent the physical position of the CAV. This is an artifice to understand, in

fact only one control structure is implemented.

The logical transition follows the rules of the control architecture. In the case of

a CAV going from state A to B, the transition is performed as soon as it is enabled in

the logic.

For the physical transition, a safe radius of the size of the CAV is traced around

the physical position of the state. This radius has to be big enough to assure the

physical position of the state is a collision-free area at the moment. In Figure 22 the

illustration of a CAV moving from left to right is shown. The real state is denoted by the

blue color and the logical state is denoted by the red color. Note that the CAV is still in

the safe radius, and therefore the real transition has not been performed yet.

Figure 22 – Illustration of real (blue) and logical (red) states.

Source: Silva, Leal and Sebem (2021).

One observation, in a transition from A to B, is that while the CAV is occupying

the radius from the A state, in fact, the CAV will be occupying both the physical state A

and the logical state B. This way, the speed of the CAV can be safely abstracted from

the model.

Hence, in the condition that the real state is equal to the logical state, it means

that the CAV have physically arrived at the destination state. Considering a path A →
B → C, one interesting observation is that the logical transition from state B to C, for

99

77

example, will be only enabled after the physical transition from A to B is finished. In

other words, the transition B → C is enabled after the real state is equal to the logical

state: B. For this purpose, comparing the real and logical states of a CAV is very

useful, because if both are equal, it means the last transition has been concluded.

100

78

6 SIMULATIONS AND EXPERIMENTS OF THE PROPOSED ARCHITECTURE

In this chapter, we present examples, simulations and experiments which were

designed with the aim to validate the control architecture, as well as to stress it to

extreme conditions.

In the context of this thesis, we have adapted a simulation environment the

Robotarium1 simulator (WILSON et al., 2020), which provides a 2D graphical video

of the simulations. For the experimental results, we have built an infrastructure with

5 Lego Mindstorm robots, in the line-following configuration and a road structure with

5×6 intersections.

6.1 EXAMPLES

In this section, we provide two examples to illustrate the proposed methodology

in a didactic manner. The examples are presented step by step, and in each step,

the situation is referred to the proposed solution. In both examples, we use the same

setup, with different conditions.

The examples are based on the transit of CAVs in a given map, such as depicted

in Fig. 23a. We specifically model a map with “one lane & two ways” roads, as it is the

worst case in path dispute between CAVs. Path planning in traditional “two lanes & two

ways” roads would be easier to solve.

The system for both examples is formed by two CAVs, named cav1 e cav2, which

move on the map. The map is shown in Fig. 23a and its model with 6 states (A, B,

C, D, E, F) is shown in Fig. 23b. The roads are composed of one lane which allows

traveling in both ways, however, only one vehicle must occupy the road at a time. In

order to simplify the computation of the shortest path, the distances between adjacent

intersections are equal. To improve the solution for arbitrary distances, a weighted

automata should be used for map modeling. In these examples, the communication

range is considered to cover at least two states ahead in any direction.

The root graph model of this map is given in Fig. 23b, where each state repre-

sents an intersection in space. Thus, if two CAVs cannot occupy the same physical

space, consequently they cannot occupy the same state, at the same time. The occu-
1<https://www.robotarium.gatech.edu>

101

79

Figure 23 – Map for the examples: (a) design and (b) Root Graph model.

(a)

A B C

D E F

a|b

b|a

b|c

c|b

d|e

e|d

e|f

f |e

a
|d

d
|a b|ee|b c|ff
|c

(b)
Source: designed by the author (2022).

pation of the same state by two different CAVs represents a possible collision between

them. The transitions’ names indicate the states of origin and destination. For example,

a|b indicates the transition from state A to state B.

CAVs may move both ways between states, however, only one CAV may occupy

the road at a time. Thus, if a vehicle occupies the state A the events b|a e d|a must be

disabled for all CAVs in the communication range to avoid two vehicles occupying the

same state and consequently avoid a possible collision.

6.1.1 Example 1

Consider that the CAVs are fully automated and have a destination to reach from

their starting point. Initially, the cav1 is in the A1 position and its destination is to reach

the C1 position. For cav2, the initial position is C2 and its destination is to reach the A2

position.

The explanation of the examples is based on the flowchart in Fig. 21. Note that

the operation of both CAVs is not synchronous, but we group some initial steps in the

flowchart for both CAVs to simplify the explanation. Initially, both CAVs receive their

destinations at block 2. At block 3 they check by disablings from other CAVs, however,

102

80

none of them has computed their coordination controller, and D1↓ = D2↓ = ∅. Then,

they compute K1 and K2, which in this case is equal to G1 and G2, respectively. Thus

Ki is not empty for both CAVs, at block 4.

Suppose cav1 finishes its computation of Cpa1 and Cco1 at block 5 first, in which

Cpa1 is such that Lm(Cpa1) = {a|b1b|c1}. At this point, cav1 begins to broadcast its

disablings for other CAVs, D1↑ = {d|a, b|a}, in the cyclic interruption at the bottom of

the flowchart. In block 6, cav1 checks for the received disablings, which is empty while

cav2 has not finished its computation at block 5.

In sequence, cav2 finishes computing Cpa2 and Cco2 at block 5, in which Cpa2 is

such that Lm(Cpa2) = {c|b2b|a2}. The control structure for both CAVs considering this

situation is presented in Fig. 24. Note that G1 and G2 are local plants, in the inferior

blocks in Fig. 24, which represent the map with all possible paths for the CAVs.

Figure 24 – Initial models for Example 1.

A1 B1 C1

Σ\
{d|a, b|a}

Σ \ {a|b,
c|b, e|b}

Σ\
{f |c, b|c}

a|b1 b|c1

A1 B1 C1
a|b1 b|c1 ∪

R1

A1 B1 C1

D1 E1 F1

a|b1

b|a1

b|c1

c|b1

d|e1

e|d1

e|f1

f |e1

a
|d

1

d
|a

1

b|e
1

e|b
1

c|f
1

f
|c 1

Σ1

d
is
a
b
li
n
g
s

fo
r
c
a
v
1

A2 B2 C2

Σ\
{d|a, b|a}

Σ \ {a|b,
c|b, e|b}

Σ\
{f |c, b|c}

b|a2 c|b2

A2 B2 C2b|a2 c|b2 ∪

R2

A2 B2 C2

D2 E2 F2

a|b2

b|a2

b|c2

c|b2

d|e2

e|d2

e|f2

f |e2

a
|d

2

d
|a

2

b|e
2

e|b
2

c|f
2

f
|c 2

Σ2

d
is
a
b
li
n
g
s

fo
r
c
a
v
2

disablings D1↑
imposed by

cav1

disablings
received by

cav1

disablings D2↑
imposed by

cav2

disablings
received by

cav2

D
2
↓

D
1
↓

Source: designed by the author (2022).

Continuing the analysis, at block 7, cav1 checks for momentary blocking and the

result is no. At block 8, cav1 updates D1↑ = {a|b, c|b, e|b}, and executes one control

action, which is the execution of the event a|b1.
While cav1 is moving from A1 to B1, cav2 checks for the received disabling which

is D2↓ = {a|b2, c|b2, e|b2}, at block 6. And at block 7, cav2 is momentary blocked (equa-

103

81

tion 5.2), as its only active event c|b2 at the current state of Cpa2 is disabled by cav1. At

block 3, cav2 checks for changes in D2↓, which is still {a|b2, c|b2, e|b2}; then it computes

K2 considering c|b2 as disabled. Note that only δ(C2, c|b2) = B2 is removed from K2,

δ(E2, e|b2) = B2 and δ(A2, a|b2) = B2 are not removed as they are not in the current

state (B2) of K2 (see Algorithm 1). At block 4, K2 is not empty. At block 5 cav2 recom-

putes its controller. Considering cav1 have reached state B1, the situation of the CAVs

is presented in Figure 25.

Figure 25 – Recomputed models after reconfiguration in Example 1.

B1 C1

Σ \ {a|b,
c|b, e|b}

Σ\
{f |c, b|c}

b|c1

B1 C1
b|c1 ∪

R1

A1 B1 C1

D1 E1 F1

a|b1

b|a1

b|c1

c|b1

d|e1

e|d1

e|f1

f |e1

a
|d

1

d
|a

1

b|e
1

e|b
1

c|f
1

f
|c 1

Σ1

d
is
a
b
li
n
g
s

fo
r
c
a
v
1

C2

E2D2

A2

F2

B2b|a2
e|b

2

Σ\
{a|b,

e|b, c|b}

e|d2

d
|a

2

Σ \ {f |e,
d|e, b|e}

Σ\
{e|d, a|d}

Σ\
{b|a,
d|a}

Σ\
{b|c,
f |c}

Σ\
{e|f, c|f}

f |e2
c|f

2

C2

E2D2

A2

F2

B2b|a2

e|b
2

e|d2

d
|a

2

c|f
2

f |e2

∪

R2

A2 B2 C2

D2 E2 F2

a|b2

b|a2

b|c2

c|b2

d|e2

e|d2

e|f2

f |e2

a
|d

2

d
|a

2

b|e
2

e|b
2

c|f
2

f
|c 2

Σ2

d
is
a
b
li
n
g
s

fo
r
c
a
v
2

disablings D1↑
imposed by cav1

disablings
received
by cav1

disablings D2↑
imposed by cav2

disablings
received
by cav2

D
2
↓

D
1
↓

Source: designed by the author (2022).

As soon as cav2 moves from state C2 to state F2, cav1 is free to reach its final

destination at state C1. These paths of Figure 25 will hold until CAVs finish their paths,

as they do not cross each other in this example.

The final path for cav2 is longer than its initial path, however, considering both

vehicles as part of a global system, on average, this solution is the shortest feasi-

104

82

ble path for both CAVs. Note that the final path for cav2 has two shortest paths in

Lsp(E2) = Lm(Cpa2 , E2). This is the maximally permissive language for cav2 at the

current situation.

6.1.2 Example 2

The objective of example 2 is to exemplify the solution when the computation of

Ki is empty while solving a momentary blocking. This example is similar to Example

1, however, now the destination of the cav2 is B2 position.

The first steps of this example can be considered the same as example 1 until

the models for the CAVs are computed at block 5. In this case, the models for the

controllers are represented in Figure 26.

Figure 26 – Initial models for Example 2.

A1 B1 C1

Σ\
{d|a, b|a}

Σ \ {a|b,
c|b, e|b}

Σ\
{f |c, b|c}

a|b1 b|c1

A1 B1 C1
a|b1 b|c1 ∪

R1

A1 B1 C1

D1 E1 F1

a|b1

b|a1

b|c1

c|b1

d|e1

e|d1

e|f1

f |e1

a
|d

1

d
|a

1

b|e
1

e|b
1

c|f
1

f
|c 1

Σ1

d
is
a
b
li
n
g
s

fo
r
c
a
v
1

B2 C2

Σ \ {a|b,
c|b, e|b}

Σ \
{f |c, b|c}

c|b2

B2 C2
c|b2 ∪

R2

A2 B2 C2

D2 E2 F2

a|b2

b|a2

b|c2

c|b2

d|e2

e|d2

e|f2

f |e2

a
|d

2

d
|a

2

b|e
2

e|b
2

c|f
2

f
|c 2

Σ2

d
is
a
b
li
n
g
s

fo
r
c
a
v
2

disablings D1↑
imposed by cav1

disablings
received by cav1

disablings D2↑
imposed by cav2

disablings
received by cav2

D
2
↓

D
1
↓

Source: designed by the author (2022).

Again, suppose cav1 finishes computing Cpa1 and Cco1 at block 5 first, in which

Cpa1 is such that Lm(Cpa1) = {a|b1b|c1}. Then, cav1 begins to broadcast its disablings

for other CAVs, D1↑ = {d|a, b|a}, in the cyclic interruption. In block 6, cav1 checks for

the received disablings, which is empty while cav2 have not finished its computation at

block 5.

In sequence cav2 finishes computing Cpa2 and Cco2 at block 5, in which Cpa2 is

105

83

such that Lm(Cpa2) = {c|b2} and D2↑ = {b|c, f |c}.

Continuing the analysis, at block 7, cav1 checks for momentary blocking and the

result is no. At block 8, cav1 updates D1↑ = {a|b, c|b, e|b}, and executes one control

action, which is the execution of the event a|b1.
While cav1 is moving from A1 to B1, cav2 checks for the received disabling which

is D2↓ = {a|b2, c|b2, e|b2}, at block 6. And at block 7, cav2 is momentary blocked (5.2),

as its only active event c|b2 at the current state of Cpa2 is disabled by cav1. At block

3, cav2 checks for changes in D2↓, which is still {a|b2, c|b2, e|b2}; then it computes K2

considering c|b2 as disabled. In this case, at block 4, K2 is empty because cav1 is

occupying the only possible state (B) in the path of cav2, i.e., the next state in the path

which is cav2 marked state.

At block 10 cav2 marks all states within one transition ahead, which is Q′
m2

=

{F2}. At block 11, cav2 checks the received disablings which have not changed; and

computes K2(Q
′
m2

). Then, at block 12, K2 is not empty, which leads to compute Cpa2

and Cco2 (block 13). The result is such that Lm(Cpa2) = {c|f2}.

Considering cav1 has reached state B1, the situation of the CAVs is presented

in Figure 27.

Figure 27 – Recomputed models after a momentary blocking in Example 2.

B1 C1

Σ \ {a|b,
c|b, e|b}

Σ\
{f |c, b|c}

b|c1

B1 C1
b|c1 ∪

R1

A1 B1 C1

D1 E1 F1

a|b1

b|a1

b|c1

c|b1

d|e1

e|d1

e|f1

f |e1

a
|d

1

d
|a

1

b|e
1

e|b
1

c|f
1

f
|c 1

Σ1

d
is
a
b
li
n
g
s

fo
r
c
a
v
1

C2

F2

Σ \ {b|c, f |c}

Σ \ {e|f, c|f}

c|f2

C2

F2

c|f2 ∪

R2

A2 B2 C2

D2 E2 F2

a|b2

b|a2

b|c2

c|b2

d|e2

e|d2

e|f2

f |e2

a
|d

2

d
|a

2

b|e
2

e|b
2

c|f
2

f
|c 2

Σ2

d
is
a
b
li
n
g
s

fo
r
c
a
v
2

disablings D1↑
imposed by cav1

disablings
received by cav1

disablings D2↑
imposed by cav2

disablings
received by cav2

D
2
↓

D
1
↓

Source: designed by the author (2022).

106

84

The next step for cav2 is to check again the received disablings (block 14) and

the momentary blocking (block 15). Then, cav2 executes a transition through event c|f2
(block 16), reaching state F2. At this stage, the momentary blocking is solved. This

procedure allows cav1 to transit to state C1 (block 8) to reach its destination, releasing

state B2 for cav2. Following, cav2 recomputes K2(Qm2) (original destination) at block 3,

and its controllers (blocks 4 and 5) to make it possible to reach state B2 through the

path f |e2 → e|b2. Similar to example 1, the final path for cav2 is longer than its initial

path, however, considering both vehicles as part of a global system, on average, this

solution is the shortest path for both CAVs.

6.2 SIMULATION RESULTS

In this section we present the simulation results in a objective manner. All codes

developed within this work are available on GitHub2. In addition, we provide videos of

the simulations on Robotarium for examples 1 and 23; and for simulation 14.

6.2.1 Simulation 1

Simulation 1 is designed to evaluate the reconfiguration and performance of

the proposed architecture for multiple CAVs. The map for this example has the same

characteristics as the map in the previous examples, however, its size is greater with

an array of 5×8 states in the automaton model of RG. To evaluate the absence of

collisions or blocking, a dense quantity of 20 CAVs is placed on this map, with random

initial positions, and random destinations. The disposal of the CAVs in the simulation

environment can be seen in Figure 28. Each CAV has a colored circle, and a square

with the same color represents their respective destinations. As soon as a CAV reaches

its destination state, a new destination is randomly attributed to it. Results show that

CAVs have reached their destinations as expected. No collisions, no deadlocks nor

livelocks were observed. All momentary blockings were solved. Note that this is a

dense setup which makes it difficult for CAVs to directly reach their destinations.
2<https://github.com/GASR-UDESC/Control_of_CAVs/tree/CEP_simulations>
3<https://youtu.be/NxbA7uSsU28>
4<https://youtu.be/rUCDD7MblUg>

107

85

Figure 28 – Environment setup for Simulation 1.

Source: designed by the author (2022).

6.2.2 Simulation 2

In this simulation, we use a square map modeled with 6×6 states, with a total

of 36 states. The objective is to verify the efficiency of the proposed solution w.r.t. the

number of CAVs on the map. We simulate the situations with 1, 2, 3, ..., 36 CAVs on

the map, i.e. 36 steps, all of them reaching random destinations. Each step was ran

for 1.5 hours, totalizing 54h of simulation. It is not recorded on video due to its long

duration.

The first analysis consists in the total completed paths, accumulated of all CAVs.

In Figure 29, a plot of the total completed paths vs. the number of CAVs is disposed.

For example, the first bar of the graph represents the first step of the simulation, in

which one CAV ran alone in the environment, with random paths, during 1.5 hours. In

other words, this CAV have completed 637 random paths in 1.5 hours. In the second

step, two CAVs have shared the environment, and they both have completed 1196

random paths in 1.5 hours. It can be observed that the greatest number of completed

paths is with 8 CAVs, which we can say is the most efficient condition considering the

system as a whole. It indicates that the ideal occupancy rate of the environment is

about 22,2%. This means that 8 CAVs have shared the environment and completed

2419 random paths in 1.5 hours.

The second analysis consists in the amount of completed paths by CAV. In

108

86

Figure 30, a plot of the average completed paths by CAV vs. the number of CAVs is

disposed. In summary, this plot is the result of dividing the data of the plot in Figure 29

by the number of CAVs. For example, this means that in the second step, each CAV

completed 598 random paths. In other words, from one CAV running alone to two CAVs

competing for road occupation, the amount of completed paths has dropped from 637

to 598. This makes sense, because when competing, CAVs often have to change

their paths. As expected, the average completed paths decays as the number of CAVs

grows.

Figure 29 – The total completed paths of all CAVs vs. the number of CAVs.

0 5 10 15 20 25 30 35

0
1
00

0
2
00

0

Number of CAVs

T
ot
a
l
C
on

cl
u
d
ed

P
a
th
s

Source: designed by the author (2022).

The third analysis consists in the average distance traveled by path. In Figure 31

the average distance traveled by path, in meters, is plotted with regard to the number of

CAVs. In the first step, one CAV alone travels 1.26 m, and this value can be considered

as the basis of the distance for random paths for this map configuration. In the second

step, with two CAVs competing, in some cases CAVs have to change their paths to

avoid collisions, because of this, their traveled distance grows to 1.31 m by path. As

expected, the average distance traveled by path grows as the number of CAVs grows.

This results make sense with a real application of urban traffic. In other words,

with more cars on the road, more difficult it gets to complete a path and longer it gets.

However, there is an acceptable amount of cars which makes it possible to share the

environment without affecting much of the performance of individual cars, which, in this

109

87

Figure 30 – The average completed paths by each CAV vs. the number of CAVs.

0 5 10 15 20 25 30 35

0
2
0
0

4
00

6
0
0

Number of CAVs

A
ve
ra
ge

C
o
n
cl
u
d
ed

P
at
h
s
b
y
C
A
V

Source: designed by the author (2022).

Figure 31 – The average distance traveled by CAV by path vs. the number of CAVs.

0 5 10 15 20 25 30 35

0
5

10
15

Number of CAVs

A
ve
ra
ge

D
is
ta
n
ce

b
y
P
a
th

(m
)

Source: designed by the author (2022).

case would be 8 CAVs. Comparing the results from one CAV alone to 8 CAVs in the

environment, the path length goes up 64%, and the amount of paths concluded in 1.5 h

goes down by 52%, which is acceptable considering a real urban traffic.

6.3 EXPERIMENTAL RESULTS

In this section, we present two experiments with the Lego Mindstorm robots to

validate the proposed architecture. The robots are set up in a line-follower configura-

110

88

tion to act as CAVs. The road structure is formed by 5×6 intersections, with uniform

distances between intersections, as shown in Fig 32. All codes for the experiments are

available in GitHub5.

Figure 32 – Experimental infrastructure with Lego Mindstorm robots.

Source: Teles, Leal and Sebem (2021).

The communication between CAVs is made through wi-fi with the MQQT proto-

col. In this setup, we have used a computer to simulate the passenger/operator on the

task of choosing destinations. It is important to note that the computer does not act as

a coordinator for the control, it is just an easy way to send commands (destinations) to

many CAVs. Also, in the second experiment random destinations are determined by

the computer.

6.3.1 Experiment 1

This experiment consists of 4 CAVs that are positioned respectively at positions

A1, G1, S1, and Y1; with destinations respectively at positions D2, X1, L1, F1. In

Figure 33, the environment is shown with the CAVs placed at their initial position, and

their destinations are denoted by red arrows. This setup forces them to cross paths

with each other, which allows us to verify the performance of avoiding collisions with
5<https://github.com/GASR-UDESC/Practical_Control_of_CAVs>

111

89

the proposed architecture.

Figure 33 – Setup for experiment 1.

Source: Teles, Leal and Sebem (2021).

A video of Experiment 1 is available online6. In the video, it can be observed the

fulfillment of the statements S1, S2, S6, and S7 (Section 1.4). The other statements

are intrinsic to the architecture and cannot be observed in the video.

In Table 11, we provide a comparison of the ideal minimum path distance for

each CAV and the executed path. Both CAVs 2 and 3 execute the ideal path. Both

CAVs 1 and 4 execute 2 extra transitions in relation to the ideal path, which represents

an extra traveling distance of 22,2% for each. The paths of CAVs 1 and 4 have the same

length, and it was a coincidence that they both executed 2 extra transitions, resulting in

the same extra percentage traveled. The extra distance is traveled because the CAVs

have swerved an occupied state which was in the shortest path. On average, each

CAV traveled an extra distance of 12,5% in relation to the ideal minimum paths.

6.3.2 Experiment 2

This experiment consists of 5 CAVs that are respectively positioned at A1, F1,

Y1, D2, and O1. Each CAV executes three random paths and then stays parked at the
6<https://youtu.be/stxbJfdZRmA>

112

90

Table 11 – Comparison of the ideal distance and the executed distance in
Experiment 1.

CAV
Ideal

Distance
(m)

Executed
Distance

(m)
∆ (m)

1 3.6 4.4 0.8
2 2.8 2.8 0
3 2.8 2.8 0
4 3.6 4.4 0.8

Total 12.8 14.4 1.6

Source: designed by the author (2022).

last destination. We designed this random experiment to be similar to real car traffic.

A video of Experiment 2 is available online7. It can be observed that even with

random paths the statements S1, S2, S6, and S7 are fulfilled. As it was mentioned

before, the other statements are intrinsic to the architecture and cannot be observed in

the video.

In Table 12, we provide a comparison of the ideal minimum path distance for

each CAV and the executed paths in Experiment 2. It can be seen that only CAV 3, in

one path, has executed a path longer than the ideal minimum path. Considering the

total traveled distance, on average, each CAV would have traveled an extra distance

of 8% in relation to the ideal minimum paths. It can be concluded that Experiment 1

is a specific case because the CAVs are forced to cross paths with each other, and

Experiment 2 represents the realistic traffic of CAVs.

7<https://youtu.be/zpc1iIvCxAg>

113

91

Table 12 – Comparison of the ideal distance and the executed distance in
Experiment 2.

CAV Path
Ideal

Distance
(m)

Executed
Distance

(m)
∆ (m)

1 A1 H1 0.8 0.8 0
1 H1 I1 0.4 0.4 0
1 I1 K1 0.8 0.8 0
2 F1 A1 2 2 0
2 A1 Y1 1.6 1.6 0
2 Y1 U1 1.2 1.2 0
3 Y1 D1 2.8 2.8 0
3 D1 E1 0.4 0.4 0
3 E1 C2 1.6 3.2 1.6
4 D2 A2 1.2 1.2 0
4 A2 V1 0.8 0.8 0
4 V1 F1 2 2 0
5 O1 T1 0.8 0.8 0
5 T1 J1 1.6 1.6 0
5 J1 Z1 2 2 0

Total 20 21.6 1.6

Source: designed by the author (2022).

114

92

7 DISCUSSION

In this chapter, a discussion is made regarding some possibilities which can be

explored with the proposed architecture.

7.1 CONSIDERING UNCONTROLLABLE BEHAVIOR

In our studies, we have not visualized the need for modeling uncontrolled be-

havior of CAVs. Anyway, we present a model with an uncontrolled behavior, and how

the proposed control architecture would have to be changed to remain valid. Also, we

present what would be a bad state in this case, and the equivalent calculation of the

supervisor.

There are various manners of abstracting a DES in an automaton model. Con-

sidering that events are conceptually instantaneous, one manner of modeling intersec-

tions is to separate the events of departing of one intersection and arriving at another

intersection. In this case, the arrival at one intersection can be modeled as an uncon-

trollable event, as shown in Figure 34.

Figure 34 – Map for the examples: (a) design and (b) Root Graph model.

A

K

C E

M O

(a)

Ai Bi Ci Di Ei

Fi Hi Ji

Ki Li Mi Ni Oi

a|bi\
b|ci c|di\

d|ei

l|ki m|li
\

n|mi o|ni

\

f
|a

i

e|j
i

\

k
|f i

\ h
|m

i

j|o
i

c|h
i

\

(b)
Fonte: Elaborado pelo autor (2022).

115

93

Consider a system with two CAVs, if cav1 sends D1↑ = {h|m, n|m}, then cav2

will have to include the SupC operation in the calculus of Cpa2, as shown in Algorithm 4.

Algorithm 4: Computation of Cpai with uncontrollable events.
Input: Ki

Output: Cpai

1 Spai := supC(Gi,Ki);
2 Cpai := Dijkstra(Spai);

Another interesting idea is to model pedestrian behavior, such as a cross signal,

as an uncontrollable event.

7.2 CONSIDERING RESTRICTED MODELS FOR GI

In a very large-scale map, it is desirable that each CAV uses a model for Gi

which covers the surroundings of the desired path. In other words, there is no need to

load an automaton Gi which models the entire map. For example, if a CAV is moving

within a city, there is no need to load an automaton model of the entire state.

It is important to note that the proposed architecture accepts a restricted model

of Gi and would still work without any loss.

7.3 RESERVING A PATH FOR SPECIAL VEHICLES

In a real world scenario, it is desirable to have special vehicles which have pri-

ority in traffic, such as ambulances and firetrucks. In our proposal we have considered

the same priority for all CAVs, however, through a simple modification in Algorithm 3,

it is possible to reserve a path for special vehicles. Basically, the idea is to disable

events for the desirable intersections, for example, the special vehicle could reserve

three intersections ahead allowing it to travel faster.

The only restriction of implementing this technique is that the communication

range must be greater than the reserving range. In Figure 35, an illustration of the

ranges is made for the CAV in the 3 line and fourth column. The communication range

is three states ahead, marked by a gray area; and the reserving range is two states

ahead, marked by a red area. The range is considered as square to facilitate the

understanding.

116

94

Figure 35 – Illustration of the communication (gray) and reserving (red) ranges.

Source: Silva, Leal and Sebem (2021).

7.4 COMMUNICATION TECHNOLOGIES FOR CAVS

An important matter to discuss is the reliability of the communication to be im-

plemented for the proposed architecture. As it is based on the exchange of events to

be disabled, it is required a very reliable communication system, otherwise, collisions

could occur. In this sense, the Ultra-Reliable Low Latency Communication (URLLC)

over 5G is a feasible alternative, which provides 99.99% of reliability with less than 1

ms latency (ALI et al., 2021).

Lonc and Cincilla (2016) presents the communications standards which have

been developed specifically for cooperative intelligent transportation systems. This

topic has been studied in a while and, European (ETSI, 2019) & American (NHTSA,

2017) communications standards already have been developed for V2V communica-

tion of CAVs. Singh, Nandi and Nandi (2019) developed an extensive survey on vehic-

ular communication technologies and is an important reference on the topic. Khan et

al. (2022) provides a specific survey for communication of CAVs.

117

95

8 CONCLUSION

In this thesis, a distributed control architecture for CAVs, with the features of

scalability and reconfiguration at runtime was presented. This architecture is capable

of solving a variety of problems on CAVs control such as intersection management,

road merging, dynamic path planning, and roundabouts. The privacy of the CAVs

paths, the nonblocking and collision-free behavior are assured by the control architec-

ture. The major advantage of the proposed control architecture is the combination of

three desirable features in a simple methodology: scalable number of CAVs, distributed

coordination, and reconfigurable path planning. The implementation of the algorithms

developed in this thesis is simple, considering the complexity of the problem. Further-

more algorithms are distributed (embedded) in each CAV, which reduce the complexity

and processing capacity, comparing to a algorithm in a centralized processor.

The objectives presented in the Chapter 1 were all achieved with the proposed

architecture. The scalability is achieved by exploring the similarity of CAVs in the de-

velopment of an algorithm that works independently of the number of CAVs. The re-

configuration at runtime, which allows the assignment of new tasks, is achieved by an

algorithm which recomputes the CAVs models at runtime. And, the distributed control

is achieved by developing a control algorithm which can be embedded in the CAVs,

allowing the control actions to be decided locally by each vehicle, with no need for a

coordinator. Results show that the proposed architecture is reliable and feasible in var-

ious situations. Also, results show that the efficiency of the control is consistent with

real situations in traffic of vehicles.

The architecture supports other characteristics of real urban/interurban traffic

that were not modeled in the examples, such as exclusive lanes (e.g. bus lanes),

roundabouts, road merging, priority for specific vehicles (e.g. ambulances), variable

speed of CAVs, signalized intersections, and signalized pedestrian crossings. The ar-

chitecture is adequate for use in real urban/interurban traffic overcoming both problems

of reconfigurable path planning and non-signalized intersections, with nonblocking and

collision-free behavior. Furthermore, the architecture does not need an infrastructure,

which reduces the cost and time of implementation in large urban environments. An-

other advantage is the privacy of the path for each CAV, which enhances the safety for

118

96

the users.

This method can be easily applied to mixed traffic, with CAVs and HDVs. In

the HDVs, the path controller is the human driver, then an electronic device could be

installed to serve as coordination controller. This device would show the human driver

when to stop or go ahead. In this case, the path would be manually chosen by the

human driver. And in the CAVs, nothing would change.

The unfolding of this work includes its application to similar multi-agent systems,

such as Unmanned Aerial Vehicle (UAV), as well as the improvement of the modeling

towards traffic of CAVs. For example, the map in the simulation and experiments could

be modeled to represent real urban maps. In other words, the number of road lanes

must be increased, and different configurations of lanes, ways, intersections, or round-

abouts must be explored. In this work, it is considered that all CAVs consider disablings

one state ahead on its path. This aspect may be explored in the sense that some CAVs

may have priority over others (e.g. ambulances). The idea would be to reserve many

states ahead on its path, through the disablings of events in a sequence of states. This

would guarantee the minimum time for the priority CAV to reach its destination. From

another perspective, this method could be easily adapted to support map reconfigura-

tion, for example, given a city, the traffic is more intense in one direction in the morning,

and at nightfall, the traffic is more intense in the opposite direction. So the map could

be reconfigured accordingly in each CAV, i.e., the street direction could be reversed

accordingly to the need of the traffic.

8.1 PUBLICATIONS AND SUPERVISIONS

During the period of development of the thesis, the author have written 8 papers,

4 of them are related to this thesis, and 4 are collaborations within the research group

in other topics. In total, 5 papers were published in the period of development of this

thesis.

8.1.1 Papers in the Context of this Thesis

The work developed in the context of this thesis comprehends the writing of 4

papers:

1. SEBEM, R.; LEAL, A. B. Proposta de arquitetura para controle distribuído de sis-

119

97

temas a eventos discretos multiagentes autônomos. In: Anais do 14º Simpósio

Brasileiro de Automação Inteligente (SBAI). Ouro Preto: [s.n.], 2019.

2. SEBEM, R. et al. Architecture for scalable and distributed control of connected

and automated vehicles with reconfigurable path planning. (To be submitted).

3. SEBEM, R.; LEAL, A. B.; BERTOL, D. W. Overview of distributed control for con-

nected and automated vehicles. (In preparation).

4. SILVA, M. F. d.; SEBEM, R.; LEAL, A. B.; BERTOL, D. W. Implementation strate-

gies for distributed control of connected and automated vehicles. (In preparation).

The first paper is the original proposal for the architecture, which was developed

to achieve the current proposal.

The second paper is part of the Chapter 5, which is the proposal of this thesis.

This paper is being finished and will be submitted to a qualified international journal.

The third paper is based on Chapters 4 and 3, in which the methods of control

for CAVs in the literature are reviewed. This paper is in phase of writing of the original

draft. We intend to submit this paper to a qualified international journal.

The fourth paper is related to the implementation of the architecture, Section 5.3

and Chapter 6 are related with this paper. This paper is in phase of review by the

supervisors.

8.1.2 Collaborations within the Research Group

During the development of this thesis, the author has collaborated with other

work in the context of the research group. Below, the list of papers is classified by

importance order, and consequently by the time and effort spend by the author on

them. The author have spent more than a year, full time, working in the fifth and sixth

papers.

5. WATANABE, A. T.; SEBEM, R.; LEAL, A. B.; HOUNSELL, M. da S. Fault progno-

sis of discrete event systems: An overview. Annual Reviews in Control, v. 51,

p. 100–110, 2021.

6. MAAS, D.; SEBEM, R.; LEAL, A. B. Multilayer architecture for fault diagnosis of

embedded systems. International Journal of Prognostics and Health Man-

agement, PHM Society, v. 12, n. 2, dec 2021.

120

98

7. SCHULZE, L.; BERTOL, D. W.; SEBEM, R. Conventional and explicit MPC ap-

plied to robotic systems: a computational cost evaluation. In: 2021 IEEE 29th

Mediterranean Conference on Control and Automation (MED). [S.l.: s.n.],

2021. p. 861–866.

8. SCHULZE, L.; SEBEM, R.; BERTOL., D. W. Performance of PSO and GWO algo-

rithms applied in text-independent speaker identification. In: FILHO, C. J. A. B. et

al. (Ed.). Anais do 15º Congresso Brasileiro de Inteligência Computacional.

Joinville, SC: SBIC, 2021. p. 1–6.

8.1.3 Supervisions

The proposal in this work was extended in the bachelor thesis of Silva, Leal and

Sebem (2021) and Teles, Leal and Sebem (2021). The author have supervised their

works in the period of development of this thesis:

SILVA, M. F. d.; LEAL, A. B.; SEBEM, R. Criação de estruturas de prioridades

entre multi agentes autônomos em uma arquitetura de controle distribuído. Tra-

balho de Conclusão de Curso (Barchelor’s Thesis) — Universidade do Estado de Santa

Catarina, Centro de Ciências Tecnológicas, Curso de Engenharia Elétrica, 2021.

TELES, M. G.; LEAL, A. B.; SEBEM, R. Criação de uma infraestrutura para

testes de controle distribuído de sistemas multirrobôs. Trabalho de Conclusão de

Curso (Barchelor’s Thesis) — Universidade do Estado de Santa Catarina, Centro de

Ciências Tecnológicas, Curso de Engenharia Elétrica, 2021.

121

99

REFERENCES

ALI, R. et al. URLLC for 5G and beyond: Requirements, enabling incumbent
technologies and network intelligence. IEEE Access, v. 9, p. 67064–67095, 2021.

ČAPKOVIč, F. A modular system approach to DES synthesis and control. In: 2009
IEEE Conference on Emerging Technologies Factory Automation. [S.l.: s.n.],
2009. p. 1–8.

ČAPKOVIč, F. Cooperation of autonomous agents based on supervisory control
of DES. In: Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical
Conference. [S.l.: s.n.], 2010. p. 178–183.

ČAPKOVIč, F.; SERIN, F. Supervisory control of agents cooperation. In: 2008 4th
International IEEE Conference Intelligent Systems. [S.l.: s.n.], 2008. v. 1, p.
6–8–6–13.

AUER, A.; DINGEL, J.; RUDIE, K. Concurrency control generation for dynamic threads
using discrete-event systems. Science of Computer Programming, v. 82, p. 22 – 43,
2014. Special Issue on Automated Verification of Critical Systems (AVoCS’11).

BAKIBILLAH, A. S. M.; HASAN, M.; RAHMAN, M. M.; KAMAL, M. A. S. Predictive
car-following scheme for improving traffic flows on urban road networks. Control
Theory and Technology, v. 17, n. 4, p. 325–334, Nov 2019.

BASILE, F.; CHIACCHIO, P.; MARINO, E. D. An auction-based approach to control
automated warehouses using smart vehicles. Control Engineering Practice, v. 90, p.
285 – 300, 2019.

BORDINI, R. H.; HüBNER, J. F.; WOOLDRIDGE, M. Programming Multi-Agent
Systems in AgentSpeak Using Jason (Wiley Series in Agent Technology). USA:
John Wiley & Sons, Inc., 2007. ISBN 0470029005.

CAI, K.; WONHAM, W. M. Supervisor localization: A top-down approach to distributed
control of discrete-event systems. IEEE Transactions on Automatic Control, v. 55,
n. 3, p. 605–618, March 2010.

CAI, K.; WONHAM, W. M. New results on supervisor localization, with application to
multi-agent formations. IFAC Proceedings Volumes, v. 45, n. 29, p. 233 – 238, 2012.
11th IFAC Workshop on Discrete Event Systems.

CAI, K.; WONHAM, W. M. Supervisor localization of discrete-event systems based
on state tree structures. IEEE Transactions on Automatic Control, v. 59, n. 5, p.
1329–1335, May 2014.

CAI, K.; WONHAM, W. M. New results on supervisor localization, with case studies.
Discrete Event Dynamic Systems, v. 25, n. 1, p. 203–226, Jun 2015.

CASSANDRAS, C.; LAFORTUNE, S. Introduction to Discrete Event Systems. 3rd.
ed. [S.l.]: Kluwer Academic Publishers, 2021.

CHALAKI, B.; MALIKOPOULOS, A. A. Time-optimal coordination for connected and
automated vehicles at adjacent intersections. IEEE Transactions on Intelligent
Transportation Systems, p. 1–16, 2021.

122

100

CHEN, D. et al. Robust H∞ control of cooperative driving system with external
disturbances and communication delays in the vicinity of traffic signals. Physica
A: Statistical Mechanics and its Applications, v. 542, p. 123385, 2020. ISSN
0378-4371.
CHEN, J.; LIANG, H.; LI, J.; LV, Z. Connected automated vehicle platoon control
with input saturation and variable time headway strategy. IEEE Transactions on
Intelligent Transportation Systems, p. 1–12, 2020.
CHEN, J.; LIANG, H.; LI, J.; XU, Z. A novel distributed cooperative approach for mixed
platoon consisting of connected and automated vehicles and human-driven vehicles.
Physica A: Statistical Mechanics and its Applications, v. 573, 2021.
CHEN, T. et al. Connected and automated vehicle distributed control for on-ramp
merging scenario: A virtual rotation approach. Transportation Research Part C:
Emerging Technologies, v. 133, 2021.
CHEN, X.; MOREL, D.; RAKOTO-RAVALONTSALAMA, N. Multi-agent based
supervisory control of an experimental manufacturing cell. IFAC Proceedings
Volumes, v. 37, n. 11, p. 379 – 382, 2004. 10th IFAC/IFORS/IMACS/IFIP Symposium
on Large Scale Systems 2004: Theory and Applications, Osaka, Japan, 26-28 July,
2004.
CHEN, X. et al. Non-signalized intersection network management with connected and
automated vehicles. IEEE Access, v. 8, p. 122065–122077, 2020.
CHO, K.-H. A study on fault-tolerant control and operation of serial production
systems. In: Proceedings KORUS 2000. The 4th Korea-Russia International
Symposium On Science and Technology. [S.l.: s.n.], 2000. v. 2, p. 175–180 vol. 2.
CHO, K.-H.; LIM, J.-T. Multi-agent supervisory control of serial production systems for
complementary fault-tolerance**this work was supported by korea research foundation
grant. (krf-99-003-e00420). IFAC Proceedings Volumes, v. 33, n. 17, p. 793 – 798,
2000. 2nd IFAC Conference on Management and Control of Production and Logistics
(MCPL 2000), Grenoble, France, 5-8 July 2000.
CHO, K.-H.; LIM, J.-T. Multiagent supervisory control for antifault propagation in serial
production systems. IEEE Transactions on Industrial Electronics, v. 48, n. 2, p.
460–466, April 2001.
CHUNG, S. L.; LAFORTUNE, S.; LIN, F. Limited lookahead policies in supervisory
control of discrete event systems. IEEE Transactions on Automatic Control, v. 37,
n. 12, p. 1921–1935, Dec 1992.
CHUNG, S. L.; LAFORTUNE, S.; LIN, F. Recursive computation of limited lookahead
supervisory controls for discrete event systems. Discrete Event Dynamic Systems:
Theory and Applications, v. 3, n. 1, p. 71–100, 1993. Cited By 13.
CLARK, R. A. et al. Autonomous and scalable control for remote inspection with
multiple aerial vehicles. Robotics and Autonomous Systems, v. 87, p. 258–268,
2017.
CURY, J. E. R. Teoria de controle supervisório de sistemas a eventos discretos. V
Simpósio Brasileiro de Automação Inteligente, Canela-RS, 2001.
DEBADA, E. G.; GILLET, D. Virtual vehicle-based cooperative maneuver planning
for connected automated vehicles at single-lane roundabouts. IEEE Intelligent
Transportation Systems Magazine, v. 10, n. 4, p. 35–46, 2018.

123

101

DING, J.; LI, L.; PENG, H.; ZHANG, Y. A rule-based cooperative merging
strategy for connected and automated vehicles. IEEE Transactions on Intelligent
Transportation Systems, v. 21, n. 8, p. 3436–3446, 2020.

DU, Z.; HOMCHAUDHURI, B.; PISU, P. Hierarchical distributed coordination strategy
of connected and automated vehicles at multiple intersections. Journal of Intelligent
Transportation Systems: Technology, Planning, and Operations, v. 22, n. 2, p.
144–158, 2018.

DULCE-GALINDO, J. A.; SANTOS, M. A.; RAFFO, G. V.; PENA, P. N. Autonomous
navigation of multiple robots using supervisory control theory. In: 2019 18th European
Control Conference (ECC). [S.l.: s.n.], 2019. p. 3198–3203.

DULCE-GALINDO, J. A.; SANTOS, M. A.; RAFFO, G. V.; PENA, P. N. Distributed
supervisory control for multiple robot autonomous navigation performing single-robot
tasks. Mechatronics, v. 86, p. 102848, 2022.

DURFEE, E. H.; LESSER, V. R. Chapter 10 - negotiating task decomposition and
allocation using partial global planning. In: GASSER, L.; HUHNS, M. N. (Ed.).
Distributed Artificial Intelligence. San Francisco (CA): Morgan Kaufmann, 1989. p.
229 – 243. ISBN 978-1-55860-092-8.

ETSI. Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set
of Applications; Part 2: Specification of Cooperative Awareness Basic Service.
[S.l.], 2019. v. 1.4.1. Available at: <https://www.etsi.org/deliver/etsi_EN/302600\
_302699/30263702/01.04.01_30/en_30263702v010401v.pdf>.

FENG, Y. et al. Design of distributed cyber-physical systems for connected and
automated vehicles with implementing methodologies. IEEE Transactions on
Industrial Informatics, v. 14, n. 9, p. 4200–4211, 2018.

FRANSEN, K. et al. A dynamic path planning approach for dense, large, grid-based
automated guided vehicle systems. Computers & Operations Research, v. 123, p.
105046, 2020.

FURCI, M.; PAOLI, A.; NALDI, R. A supervisory control strategy for robot-assisted
search and rescue in hostile environments. In: 2013 IEEE 18th Conference on
Emerging Technologies Factory Automation (ETFA). [S.l.: s.n.], 2013. p. 1–4.

GORDON, D.; KIRIAKIDIS, K. Adaptive supervisory control of interconnected discrete
event systems. In: Proceedings of the 2000. IEEE International Conference on
Control Applications. Conference Proceedings (Cat. No.00CH37162). [S.l.: s.n.],
2000. p. 935–940.

GOULET, N.; AYALEW, B. Distributed maneuver planning with connected and
automated vehicles for boosting traffic efficiency. IEEE Transactions on Intelligent
Transportation Systems, 2021.

GUAN, Y. et al. Centralized cooperation for connected and automated vehicles at
intersections by proximal policy optimization. IEEE Transactions on Vehicular
Technology, v. 69, n. 11, p. 12597–12608, 2020.

GUANETTI, J.; KIM, Y.; BORRELLI, F. Control of connected and automated vehicles:
State of the art and future challenges. Annual Reviews in Control, v. 45, p. 18 – 40,
2018.

124

102

GUO, H. et al. A distributed adaptive triple-step nonlinear control for a connected
automated vehicle platoon with dynamic uncertainty. IEEE Internet of Things
Journal, v. 7, n. 5, p. 3861–3871, 2020.

GUO, Q.; LI, L.; BAN, X. J. Urban traffic signal control with connected and automated
vehicles: A survey. Transportation Research Part C: Emerging Technologies,
v. 101, p. 313–334, 2019. ISSN 0968-090X.

HADJ-ALOUANE, N. B.; LAFORTUNE, S.; LIN, F. Centralized and distributed
algorithms for on-line synthesis of maximal control policies under partial observation.
Discrete Event Dynamic Systems: Theory and Applications, v. 6, n. 4, p. 379–427,
1996.

HüBNER, J. F. Agent Oriented Programming with Jason @JaCaMo. 2014. Lecture
notes. Access on: may 2019. Available at: <http://jacamo.sourceforge.net/tutorial/
gold-miners/aop-altissimo-14.pdf>.

HüBNER, J. F. Multiagent Systems. 2017. Lecture notes. Access on: may 2019.
Available at: <http://jomi.das.ufsc.br/mas/slides/intro.pdf>.

HILL, R.; LAFORTUNE, S. Scaling the formal synthesis of supervisory control
software for multiple robot systems. In: 2017 American Control Conference (ACC).
[S.l.: s.n.], 2017. p. 3840–3847.

HIRAISHI, K. A formalism for decentralized control of discrete event systems. In:
Proceedings of the 41st SICE Annual Conference. SICE 2002. [S.l.: s.n.], 2002.
v. 1, p. 272–277 vol.1.

HU, Z.; HUANG, J.; YANG, D.; ZHONG, Z. Constraint-tree-driven modeling and
distributed robust control for multi-vehicle cooperation at unsignalized intersections.
Transportation Research Part C: Emerging Technologies, v. 131, p. 103353, 2021.
ISSN 0968-090X.

HU, Z.; HUANG, J.; YANG, Z.; ZHONG, Z. Embedding robust constraint-following
control in cooperative on-ramp merging. IEEE Transactions on Vehicular
Technology, v. 70, n. 1, p. 133–145, 2021.

HUBBARD, P.; CAINES, P. E. Initial investigations of hierarchical supervisory control
for multi-agent systems. In: Proceedings of the 38th IEEE Conference on Decision
and Control (Cat. No.99CH36304). [S.l.: s.n.], 1999. v. 3, p. 2218–2223 vol.3.

ITO, Y.; KAMAL, M. A. S.; YOSHIMURA, T.; AZUMA, S. Coordination of connected
vehicles on merging roads using pseudo-perturbation-based broadcast control. IEEE
Transactions on Intelligent Transportation Systems, v. 20, n. 9, p. 3496–3512,
2019.

JIANG, H.; PI, J.; LI, A.; YIN, C. Dynamic local path planning for intelligent vehicles
based on sampling area point discrete and quadratic programming. IEEE Access,
v. 10, p. 70279–70294, 2022.

JING, S. et al. Cooperative game approach to optimal merging sequence and on-ramp
merging control of connected and automated vehicles. IEEE Transactions on
Intelligent Transportation Systems, v. 20, n. 11, p. 4234–4244, 2019.

KAMAL, M. A. S. et al. A vehicle-intersection coordination scheme for smooth flows of
traffic without using traffic lights. IEEE Transactions on Intelligent Transportation
Systems, v. 16, n. 3, p. 1136–1147, 2015.

125

103

KARIMADINI, M.; LIN, H.; LEE, T. H. Decentralized supervisory control:
Nondeterministic transitions versus deterministic moves. In: 2009 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics. [S.l.: s.n.], 2009.
p. 1288–1293.

KATRINIOK, A. Nonconvex consensus ADMM for cooperative lane change maneuvers
of connected automated vehicles. IFAC-PapersOnLine, v. 53, n. 2, p. 14336–14343,
2020. ISSN 2405-8963. 21st IFAC World Congress.

KATRINIOK, A.; ROSARIUS, B.; MäHöNEN, P. Fully distributed model predictive
control of connected automated vehicles in intersections: Theory and vehicle
experiments. IEEE Transactions on Intelligent Transportation Systems, p. 1–13,
2022.

KHAN, M. A. et al. A journey towards fully autonomous driving-fueled by a smart
communication system. Vehicular Communications, v. 36, p. 100476, 2022. ISSN
2214-2096.

KING, J.; PRETTY, R. K.; GOSINE, R. G. Coordinated execution of tasks in a
multiagent environment. IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, v. 33, n. 5, p. 615–619, Sep. 2003.

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic
Literature Reviews in Software Engineering. [S.l.], 2007.

KNEISSL, M. et al. Combined scheduling and control design for the coordination of
automated vehicles at intersections. IFAC-PapersOnLine, v. 53, n. 2, p. 15259–15266,
2020. ISSN 2405-8963. 21st IFAC World Congress.

KOVALENKO, I.; TILBURY, D.; BARTON, K. The model-based product agent: A control
oriented architecture for intelligent products in multi-agent manufacturing systems.
Control Engineering Practice, v. 86, p. 105 – 117, 2019.

LI, S. et al. Dynamical modeling and distributed control of connected and automated
vehicles: Challenges and opportunities. IEEE Intelligent Transportation Systems
Magazine, v. 9, n. 3, p. 46–58, 2017.

LI, S. E. et al. Synchronous and asynchronous parallel computation for large-scale
optimal control of connected vehicles. Transportation Research Part C: Emerging
Technologies, v. 121, p. 102842, 2020. ISSN 0968-090X.

LIU, C.; LIN, C.-W.; SHIRAISHI, S.; TOMIZUKA, M. Distributed conflict resolution for
connected autonomous vehicles. IEEE Transactions on Intelligent Vehicles, v. 3,
n. 1, p. 18–29, 2018.

LIU, M.; ZHAO, J.; HOOGENDOORN, S.; WANG, M. A single-layer approach for
joint optimization of traffic signals and cooperative vehicle trajectories at isolated
intersections. Transportation Research Part C: Emerging Technologies, v. 134, p.
103459, 2022. ISSN 0968-090X.

LIU, P.; OZGUNER, U.; ZHANG, Y. Distributed MPC for cooperative highway
driving and energy-economy validation via microscopic simulations. Transportation
Research Part C: Emerging Technologies, v. 77, p. 80–95, 2017. ISSN 0968-090X.

LIU, Y.; CAI, K.; LI, Z. On scalable supervisory control of multi-agent discrete-event
systems. IFAC-PapersOnLine, v. 51, n. 7, p. 25–30, 2018.

126

104

LIU, Y.; CAI, K.; LI, Z. On scalable supervisory control of multi-agent discrete-event
systems. Automatica, v. 108, p. 108460, 2019.

LIU, Y.; CAI, K.; LI, Z. On scalable supervisory control of multi-agent discrete-event
systems. CoRR, abs/1704.08858, 2019. Available at: <http://arxiv.org/abs/1704.
08858>.

LONC, B.; CINCILLA, P. Cooperative its security framework: Standards and
implementations progress in europe. In: 2016 IEEE 17th International Symposium
on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). [S.l.: s.n.],
2016. p. 1–6.

LOPES, Y. K. et al. Supervisory control theory applied to swarm robotics. Swarm
Intelligence, v. 10, n. 1, p. 65–97, Mar 2016.

LUO, J.; HE, D.; ZHU, W.; DU, H. Multiobjective platooning of connected and
automated vehicles using distributed economic model predictive control. IEEE
Transactions on Intelligent Transportation Systems, p. 1–15, 2022.

MAAS, D.; SEBEM, R.; LEAL, A. B. Multilayer architecture for fault diagnosis
of embedded systems. International Journal of Prognostics and Health
Management, PHM Society, v. 12, n. 2, dec 2021.

MAHULEA, C.; KLOETZER, M.; GONZÁLEZ, R. Path Planning of Cooperative
Mobile Robots Using Discrete Event Models. [S.l.]: John Wiley & Sons, Ltd, 2020.
ISBN 9781119486305.

MIRHELI, A.; TAJALLI, M.; HAJIBABAI, L.; HAJBABAIE, A. A consensus-based
distributed trajectory control in a signal-free intersection. Transportation Research
Part C: Emerging Technologies, v. 100, p. 161 – 176, 2019.

MOSER, D.; SCHMIED, R.; WASCHL, H.; RE, L. del. Flexible spacing adaptive cruise
control using stochastic model predictive control. IEEE Transactions on Control
Systems Technology, v. 26, n. 1, p. 114–127, 2018.

NHTSA. Federal Motor Vehicle Safety Standards; V2V Communications. [S.l.],
2017. v. 1.4.1. Available at: <https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/
v2v_pria_12-12-16_clean.pdf>.

OKOLI, C. A guide to conducting a standalone systematic literature review.
Communications of the Association for Information Systems, v. 37, Nov. 2015.

PARENT, M. Automated vehicles: Autonomous or connected? In: 2013 IEEE 14th
International Conference on Mobile Data Management. [S.l.: s.n.], 2013. v. 1,
p. 2–2.

PENA, P. N.; CURY, J. E. R.; LAFORTUNE, S. Verification of nonconflict of supervisors
using abstractions. IEEE Transactions on Automatic Control, v. 54, n. 12, p.
2803–2815, 2009.

PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic mapping
studies in software engineering. In: Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering. Swindon,
UK: BCS Learning & Development Ltd., 2008. (EASE’08), p. 68–77.

PETRILLO, A.; SALVI, A.; SANTINI, S.; VALENTE, A. S. Adaptive multi-agents
synchronization for collaborative driving of autonomous vehicles with multiple

127

105

communication delays. Transportation Research Part C: Emerging Technologies,
v. 86, p. 372–392, 2018. ISSN 0968-090X.

PHAM, M. T.; SEOW, K. T. Discrete-event coordination design for distributed agents.
IEEE Transactions on Automation Science and Engineering, v. 9, n. 1, p. 70–82,
Jan 2012.

PRAYITNO, A.; NILKHAMHANG, I. Distributed model reference control for cooperative
tracking of vehicle platoons subjected to external disturbances and bounded leader
input. International Journal of Control, Automation and Systems, 2022.

QUEIROZ, M. H. de. Controle Supervisório Modular de Sistemas de Grande
Porte. Dissertação de Mestrado (Master’s Thesis) — Universidade Federal do Estado
de Santa Catarina, 2000.

QUEIROZ, M. H. de. Controle Supervisório Modular e Multitarefa de Sistemas
Compostos. Tese de Doutorado (PhD Thesis) — Universidade Federal de Santa
Catarina, Florianópolis, Maio 2004.

QUEIROZ, M. H. de; CURY, J. E. R. Modular supervisory control of large scale discrete
event systems. Proceedings of the 5th International Workshop on Discrete Event
Systems: Analysis and Control, Ghent, Belgium: Kluwer Academic Publishers, p.
103–110, 2000.

QUEIROZ, M. H. de; CURY, J. E. R. Modular multitasking supervisory control of
composite discrete-event systems. IFAC Proceedings Volumes, v. 38, n. 1, p. 91–96,
2005. 16th IFAC World Congress.

QUEIROZ, M. H. de; CURY, J. E. R.; WONHAM, W. M. Multitasking supervisory
control of discrete-event systems. Discrete Event Dynamic Systems, v. 15, n. 4, p.
375–395, Dec 2005.

RAMADGE, P. J.; WONHAM, W. M. Supervisory control of a class of discrete event
processes. SIAM J. Control Optim., Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, v. 25, n. 1, p. 206–230, Jan. 1987.

RAMADGE, P. J.; WONHAM, W. M. The control of discrete event system. In:
Proceedings of the IEEE. [S.l.: s.n.], 1989. v. 77, n. 1, p. 81–98.

RIOS-TORRES, J.; MALIKOPOULOS, A. A. Automated and cooperative vehicle
merging at highway on-ramps. IEEE Transactions on Intelligent Transportation
Systems, v. 18, n. 4, p. 780–789, 2017.

RIOS-TORRES, J.; MALIKOPOULOS, A. A. A survey on the coordination of connected
and automated vehicles at intersections and merging at highway on-ramps. IEEE
Transactions on Intelligent Transportation Systems, v. 18, n. 5, p. 1066–1077,
2017.

ROHLOFF, K.; LAFORTUNE, S. The verification and control of interacting similar
discrete-event systems. SIAM Journal on Control and Optimization, Society for
Industrial and Applied Mathematics, v. 45, p. 634–667, 2006.

ROMANOVSKI, I.; CAINES, P. E. On multi-agent product systems: Graph MA products
and partially observed MA products. In: 42nd IEEE International Conference on
Decision and Control (IEEE Cat. No.03CH37475). [S.l.: s.n.], 2003. v. 3, p.
2680–2685 Vol.3.

128

106

ROMANOVSKI, I.; CAINES, P. E. On the supervisory control of multiagent product
systems. IEEE Transactions on Automatic Control, v. 51, n. 5, p. 794–799, May
2006.

ROMANOVSKI, I.; CAINES, P. E. On the supervisory control of multi-agent product
systems: Controllability properties. Systems & Control Letters, v. 56, n. 2, p. 113 –
121, 2007.

ROSZKOWSKA, E.; REVELIOTIS, S. A distributed protocol for motion coordination in
free-range vehicular systems. Automatica, v. 49, n. 6, p. 1639–1653, 2013.

SCHULZE, L.; BERTOL, D. W.; SEBEM, R. Conventional and explicit MPC applied to
robotic systems: a computational cost evaluation. In: 2021 IEEE 29th Mediterranean
Conference on Control and Automation (MED). [S.l.: s.n.], 2021. p. 861–866.

SCHULZE, L.; SEBEM, R.; BERTOL., D. W. Performance of PSO and GWO algorithms
applied in text-independent speaker identification. In: FILHO, C. J. A. B. et al. (Ed.).
Anais do 15º Congresso Brasileiro de Inteligência Computacional. Joinville, SC:
SBIC, 2021. p. 1–6.

SEBEM, R.; LEAL, A. B. Proposta de arquitetura para controle distribuído de sistemas
a eventos discretos multiagentes autônomos. In: Anais do 14º Simpósio Brasileiro
de Automação Inteligente (SBAI). Ouro Preto: [s.n.], 2019.

SEBEM, R.; LEAL, A. B.; BERTOL, D. W. Overview of distributed control for connected
and automated vehicles. (In preparation).

SEBEM, R. et al. Architecture for scalable and distributed control of connected and
automated vehicles with reconfigurable path planning. (To be submitted).

SEOW, K.-T.; MA, C.; YOKOO, M. Multiagent planning as control synthesis. In:
Proceedings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems, 2004. AAMAS 2004. [S.l.: s.n.], 2004. p. 972–979.

SHI, H. et al. A deep reinforcement learning-based distributed connected
automated vehicle control under communication failure. Computer-Aided Civil and
Infrastructure Engineering, p. 1–19, 2022.

SILVA, M. F. d.; LEAL, A. B.; SEBEM, R. Criação de estruturas de prioridades entre
multi agentes autônomos em uma arquitetura de controle distribuído. Trabalho
de Conclusão de Curso (Barchelor’s Thesis) — Universidade do Estado de Santa
Catarina, Centro de Ciências Tecnológicas, Curso de Engenharia Elétrica, 2021.

SILVA, M. F. d.; SEBEM, R.; LEAL, A. B.; BERTOL, D. W. Implementation strategies
for distributed control of connected and automated vehicles. (In preparation).

SINGH, M.; HUHNS, M. Service-Oriented Computing: Semantics, Processes,
Agents. [S.l.]: Wiley, 2006. ISBN 9780470091494.

SINGH, P. K.; NANDI, S. K.; NANDI, S. A tutorial survey on vehicular communication
state of the art, and future research directions. Vehicular Communications, v. 18, p.
100164, 2019. ISSN 2214-2096.

STEINMETZ, E. et al. Collision-aware communication for intersection management of
automated vehicles. IEEE Access, v. 6, p. 77359–77371, 2018.

SU, R.; LIN, L. Synthesis of control protocols for multi-agent systems with similar
actions. In: 52nd IEEE Conference on Decision and Control. [S.l.: s.n.], 2013. p.
6986–6991.

129

107

TAJALLI, M.; MEHRABIPOUR, M.; HAJBABAIE, A. Network-level coordinated speed
optimization and traffic light control for connected and automated vehicles. IEEE
Transactions on Intelligent Transportation Systems, v. 22, n. 11, p. 6748–6759,
2021.

TAKAI, S.; USHIO, T. Supervisor synthesis for a class of concurrent discrete event
systems. In: 42nd IEEE International Conference on Decision and Control (IEEE
Cat. No.03CH37475). [S.l.: s.n.], 2003. v. 3, p. 2686–2691 Vol.3.

TAKAI, S.; USHIO, T. Supervisory control of a class of concurrent discrete event
systems under partial observation. Discrete Event Dynamic Systems, v. 15, n. 1, p.
7–32, Mar 2005.

TATSUMOTO, Y.; SHIRAISHI, M.; CAI, K.; LIN, Z. Application of online supervisory
control of discrete-event systems to multi-robot warehouse automation. Control
Engineering Practice, v. 81, p. 97 – 104, 2018.

TELES, M. G.; LEAL, A. B.; SEBEM, R. Criação de uma infraestrutura para testes
de controle distribuído de sistemas multirrobôs. Trabalho de Conclusão de
Curso (Barchelor’s Thesis) — Universidade do Estado de Santa Catarina, Centro de
Ciências Tecnológicas, Curso de Engenharia Elétrica, 2021.

VEMULAPALLI, M.; DASGUPTA, S.; KUHL, J. G. Fault tolerant, scalable multi-agent
control under medium access constraints. IFAC Proceedings Volumes, v. 41, n. 2, p.
6608–6613, 2008. 17th IFAC World Congress.

WANG, F.; CHEN, Y. A novel hierarchical flocking control framework for connected and
automated vehicles. IEEE Transactions on Intelligent Transportation Systems,
v. 22, n. 8, p. 4801 – 4812, 2021. ISSN 15249050.

WANG, J.; ZHAO, X.; YIN, G. Multi-objective optimal cooperative driving for connected
and automated vehicles at non-signalised intersection. IET Intelligent Transport
Systems, v. 13, n. 1, p. 79–89, 2019.

WANG, M. Infrastructure assisted adaptive driving to stabilise heterogeneous vehicle
strings. Transportation Research Part C: Emerging Technologies, v. 91, p.
276–295, 2018. ISSN 0968-090X.

WANG, X.; LEE, P.; RAY, A.; PHOPA, S. A behavior-based collaborative multi-agent
system. In: SMC’03 Conference Proceedings. 2003 IEEE International Conference
on Systems, Man and Cybernetics. Conference Theme - System Security and
Assurance (Cat. No.03CH37483). [S.l.: s.n.], 2003. v. 5, p. 4242–4248 vol.5.

WATANABE, A. T.; SEBEM, R.; LEAL, A. B.; HOUNSELL, M. da S. Fault prognosis of
discrete event systems: An overview. Annual Reviews in Control, v. 51, p. 100–110,
2021.

WEI, Y. et al. Dynamic programming-based multi-vehicle longitudinal trajectory
optimization with simplified car following models. Transportation Research Part B:
Methodological, v. 106, p. 102–129, 2017. ISSN 0191-2615.

WEISS, G. Multiagent Systems. [S.l.]: The MIT Press, 2013. ISBN 0262018896,
9780262018890.

WILSON, S. et al. The robotarium: Globally impactful opportunities, challenges, and
lessons learned in remote-access, distributed control of multirobot systems. IEEE
Control Systems Magazine, v. 40, n. 1, p. 26–44, 2020.

130

108

WU, J. et al. Distributed multilane merging for connected autonomous vehicle
platooning. Science China Information Sciences, v. 64, n. 11, 2021.

WU, R. et al. A distributed trajectory control strategy for the connected automated
vehicle in an isolated roundabout. IET Intelligent Transport Systems, v. 16, n. 2, p.
232–251, 2022.

WUTHISHUWONG, C.; TRAECHTLER, A. Consensus-based local information
coordination for the networked control of the autonomous intersection management.
Complex & Intelligent Systems, v. 3, n. 1, p. 17–32, 2017.

XIAO, W.; CASSANDRAS, C. G. Decentralized optimal merging control for connected
and automated vehicles. In: 2019 American Control Conference (ACC). [S.l.: s.n.],
2019. p. 3315–3320.

XU, B. et al. Distributed conflict-free cooperation for multiple connected vehicles
at unsignalized intersections. Transportation Research Part C: Emerging
Technologies, v. 93, p. 322–334, 2018. ISSN 0968-090X.

YANG, Z.; FENG, Y.; LIU, H. X. A cooperative driving framework for urban arterials in
mixed traffic conditions. Transportation Research Part C: Emerging Technologies,
v. 124, 2021. ISSN 0968090X. Cooperative adaptive cruise control;Cooperative
driving;Enabling technologies;Mixed-integer linear programming;Signalized
intersection;State transition diagrams;Trajectory Planning;Volume fluctuations;.

YU, C. et al. Corridor level cooperative trajectory optimization with connected and
automated vehicles. Transportation Research Part C: Emerging Technologies,
v. 105, p. 405 – 421, 2019.

ZHANG, J. et al. Analysis and design on intervehicle distance control of autonomous
vehicle platoons. ISA Transactions, v. 100, p. 446–453, 2020. ISSN 0019-0578.

ZHANG, R.; CAI, K. On supervisor localization based distributed control of discrete-
event systems under partial observation. In: 2016 American Control Conference
(ACC). [S.l.: s.n.], 2016. p. 764–769.

ZHANG, R.; CAI, K. Localization-based distributed control for large discrete-event
systems under partial observation. In: 2018 Chinese Control And Decision
Conference (CCDC). [S.l.: s.n.], 2018. p. 1492–1497.

ZHANG, Y.; CASSANDRAS, C. G. Decentralized optimal control of connected
automated vehicles at signal-free intersections including comfort-constrained turns
and safety guarantees. Automatica, v. 109, p. 108563, 2019.

ZHENG, Y. et al. Cooperative lane changing strategies to improve traffic operation and
safety nearby freeway off-ramps in a connected and automated vehicles environment.
IEEE Transactions on Intelligent Transportation Systems, v. 21, n. 11, p.
4605–4614, 2020.

ZHU, Y.; ZHU, F. Barrier-function-based distributed adaptive control of nonlinear CAVs
with parametric uncertainty and full-state constraint. Transportation Research Part
C: Emerging Technologies, v. 104, p. 249–264, 2019. ISSN 0968-090X.

ZHUANG, W.; XU, L.; YIN, G. Robust cooperative control of multiple autonomous
vehicles for platoon formation considering parameter uncertainties. Automotive
Innovation, v. 3, n. 1, p. 88–100, Mar 2020.

131

