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ABSTRACT

Neste estudo, a otimização da programação de tarefas em Computação de Alto Desempenho
(HPC) é explorada utilizando Redes Neurais em Grafos (GNNs). O foco está em comparar
diferentes variantes de GNNs. O objetivo é abordar os desafios da programação de tarefas com
dependências entre elas em ambientes HPC, aproveitando o conhecimento criado por algoritmos
de programação determinísticos para treinar modelos de GNN. Por meio de experimentação
extensiva e avaliação, a pesquisa revela as diferenças de desempenho entre as diversas variantes
de GNN, demonstrando seu potencial para superar as abordagens tradicionais de programação
em termos de eficiência e utilização de recursos. Esta análise não apenas destaca os desempenhos
comparativos entre cada variante de GNN, mas também aprimora nosso entendimento das
aplicações de GNN na programação de sistemas complexos usando Aprendizado Supervisionado.

Palavras-chave: computação de alto desempenho, redes neurais em grafos, escalonamento,
aprendizado supervisionado
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ABSTRACT

In this study, the optimization of job scheduling in High-Performance Computing (HPC) is
explored using Graph Neural Networks (GNNs). The focus is on comparing different variants of
GNNs. The goal is to address the challenges of scheduling jobs with task dependencies in HPC
environments by tapping into the knowledge created by deterministic scheduling algorithms
to train GNN models. Through extensive experimentation and evaluation, the research reveals
the performance differences between various GNN variants, demonstrating their potential to
outperform traditional scheduling approaches in terms of efficiency and resource utilization.
This analysis not only highlights the comparative performances between each GNN variant
and enhances our understanding of GNN applications in complex system scheduling using
Supervised Learning.

Keywords: high performance computing, graph neural networks, scheduling, supervised learn-
ing
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1 INTRODUCTION

Scheduling is a classical problem present in all systems whose resources are finite and
receive requests over time, as it is precisely the process of decision-making regarding the
distribution of resources to such requests, respecting a set of constraints imposed both by the
architecture of the resources and by the demands. Being a problem that is notoriously NP-hard
given its combinatorial nature (HOOGEVEEN; LENSTRA; VELTMAN, 1996), for small scales,
deterministic optimization algorithms exist that find the optimal solution and can be applied, but
as the scale increases, the deterministic search for the optimal solution becomes computationally
infeasible.

In the context of this study, a job is a collection of tasks, each of which being a piece of
computational effort that comprises the job completion. These tasks are often connected in a
specific way that determines the order of execution of the tasks, these connections are called
dependencies. Each task requires one or more resources to be executed, and it needs a minimum
amount of time to complete its operations. These resources may vary from system to system, but
for a context such as High Performance Computing (HPC) the resources are usually provided in
nodes, which are a collection of resources (e.g., CPU, RAM, etc.) available to execute tasks. A
job is said to be completed when all its tasks have been successfully completed.

Since scheduling is a combinatorial problem that deals with resources, which are con-
nected in some way and distributed to requests that have some kind of dependency, it is natural
to represent these entities as graphs (KOCOT; CZARNUL; PROFICZ, 2023), non-Euclidean
mathematical structures for data representation through a set of vertices that are connected to
each other by a set of edges. These representations are used to map the resource nodes and
also the tasks that compose the jobs, representing the relationships (i.e., communication and
dependency) between the elements. The graph representation has its many advantages, usually
being able to reduce the problem, in small scales, to other solved sub-problems (BRUCKER,
1999). More specifically, a particular type of graph known as a Directed Acyclic Graph (DAG)
can be used to represent a job (or workflow of tasks). A DAG is a graph that has no cycles in its
connections and its edges are directed, meaning that all edges are one-sided and once a vertex is
visited there is no way to arrive back to it by following the graphs edges. This representation
provides a powerful tool for better understanding workflows and their possible compositions.

Even with useful representations, the task of scheduling workflows is still a complex
activity, specially in HPC, where the scale of jobs and infrastructure is exacerbated. Not only
the scale is a factor here, but the heterogeneity of computing resources, the dynamic nature
of workflows in this context and the competing demands of multiple tenants add even more
complexity to the problem (RODRIGUEZ; BUYYA, 2018). In light of this challenge, the
acronym Workflow as a Service (WaaS) was coined (RODRIGUEZ; BUYYA, 2018), which
are services and platforms dedicated to provide an effective way for HPC users and providers
to design, execute and manage workflows. These services are highly impacted by their ability
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to effectively schedule the dynamic jobs that arrive as demand, which is an incentive for the
development of better and more adaptive scheduling solutions.

Optimized scheduling has undeniable impacts on any kind of system with finite resources,
affecting metrics such as fragmentation, availability, and response time, among others (FEITEL-
SON; RUDOLPH, 1998a). However, as the scale of the system grows, the complexity of finding
the optimal scheduling grows disproportionately, which means that for large HPC systems,
the search for a deterministic optimal algorithm is impossible, so researchers have to rely on
heuristics and stochastic algorithms that use a policy that approximates an optimal scheduling.
However, what constitutes an optimized scheduling may vary from system to system, specially in
HPC where a system’s purpose heavily depends on the specific workload and requirements of the
applications being executed. For example, in a scientific processing-oriented HPC system, the
optimized scheduling may prioritize minimizing the total execution time of scientific simulations,
maximizing the utilization of computing resources, and ensuring high throughput for a large
number of parallel jobs (CASANOVA et al., 2020). On the other hand, in a big data-oriented HPC
system, the optimized scheduling may focus on efficiently handling large-scale data processing
tasks, prioritizing data locality and minimizing data movement across the distributed system,
and ensuring efficient resource allocation for data-intensive workloads (HASSAN et al., 2014).

In another example, in an HPC system used for machine learning or AI workloads,
optimized scheduling may prioritize accelerating training and inference tasks, optimizing GPU
allocation, and managing the interplay between CPU and GPU resources (AMARAL et al., 2017).
Furthermore, the security requirements of the HPC system, such as data privacy or confidentiality
concerns, may also influence scheduling policies, such as ensuring that sensitive data jobs are
scheduled on secure nodes or taking into account data locality to minimize data exposure risks.
Even highly specific HPC scenarios, such as quantum computing, scheduling plays a role in the
system’s operation and is a critical aspect of research (NGUYEN; USMAN; BUYYA, 2023).
This means that not only is the field of research scheduling relevant today, but its relevance may
increase as HPC research expands the field.

There are many variations for heuristics, meta-heuristics and stochastic scheduling
algorithms, each having their strengths and limitations. Some limitations that may be found in
one or more of these algorithms include the lack of optimality guarantees, a high computational
time for an acceptable answer, the need for a significant amount of historical data either for
training or decision-making, and a lack of consistency in results, among others. In this context,
one type of scheduling algorithms used in large scales are machine learning-based algorithms,
which use the adaptative properties of machine learning solutions to train a model on large
datasets seeking to produce a scheduler with a policy capable of efficiently scheduling new jobs.
Specifically, neural networks have gained notoriety recently, specially deep neural networks used
in the field of Deep Learning (LECUN; BENGIO; HINTON, 2015).

In this context, the Graph Neural Networks (GNNs) (SCARSELLI et al., 2008; MICHELI,
2009) represent a type of neural network, developed independently in the fields of Chemistry and
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Computer Science to solve different problems, but operating on graph-structured data. The GNNs
work by propagating information through the edges and nodes of the graph using a set of trainable
functions (ZHOU et al., 2020). This propagation process usually involves iteratively aggregating
information from neighboring nodes and edges and updating the hidden representations of each
node, learning and modifying the flow of information to fit a set of training data. Although
there are variants of this technique, all of them work on this same principle. Given the gain that
the graph representation of the scheduling problem elements brings and the prevalence of the
application of probabilistic techniques in it, it is natural that a portion of the literature uses GNNs
and their variants for scheduling.

1.1 OBJECTIVES

The general objective of this study is to investigate the efficiency of Graph Neural
Networks to improve the overall performance of HPC schedulers. In addition to the general
objective, a list of specific objectives that may complement or even compose the general objective
is as follows:

1. Compare the efficiency of different GNN variants applied to the job scheduling problem
in HPC.

2. Investigate the behavior of GNN models in response to changes in the set of target metrics
to be optimized.

3. Develop a prototype of a GNN-based scheduler.

4. Determine a protocol for the evaluation of the prototype developed.

5. Evaluate the performance of the GNN-based scheduler on a set of metrics and improve the
scheduler’s performance based on these parameters.

1.2 METHODOLOGY

The purpose of this study is to investigate the feasibility of using GNNs under a specific
framework to improve the scheduling of HPC jobs. To achieve this goal, a quantitative and
experimental research methodology was used. The research used an experimental approach to
logical reasoning. Specifically, the GNNs was trained under the KAIROS framework (PEREIRA;
KOSLOVSKI, 2020) when applied to the job scheduling problem in the context of HPC. To
begin with, a systematic mapping was conducted to understand the role of GNNs in scheduling
HPC jobs comparing many factors, such as performance, learning paradigm, etc. The systematic
mapping will include a categorical classification of existing research on GNNs and their applica-
tions in the scheduling of HPC jobs and other contexts. This analysis helped to identify research
gaps, trends, and common fields of applicability.
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The study also involved the development of a GNN-based scheduling algorithm that was
evaluated through simulations. Simulation setups were designed based on real-world scenarios
and involved HPC jobs with varying degrees of complexity. The experiments used data collected
from or based on real-world HPC job scheduling scenarios. Data were collected from experiments
and real-world traces and analyzed using statistical techniques to evaluate the performance of the
GNN-based scheduling algorithm under a set of metrics. The results were compared with those
obtained from existing scheduling algorithms to determine the effectiveness of the GNN-based
algorithm, describing the benefits and drawbacks.

In conclusion, this study aims to contribute to the existing body of knowledge on schedul-
ing HPC jobs by exploring the potential of GNNs in this field and the applicability of the
framework used to train the GNN-based model. The quantitative and experimental research
methodology provided a rigorous design for analyzing the performance of the GNN-based
scheduling algorithm. The findings of this research may have practical implications for HPC job
scheduling in real-world applications.

1.3 ORGANIZATION

The remainder of this study was broken down into five chapters. In Chapter 2 the
definitions and details of scheduling jobs in the HPC context were explained. Chapter 3 discussed
the usage of machine learning solutions in HPC job scheduling and related work was presented.
In Chapter 4, the proposed solution was presented together with the experiments for performance
analysis. In Chapter 5 the results for the proposed solutions were presented and discussed. Finally,
in Chapter 6, the conclusions were presented along with opportunities for future work.
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2 SCHEDULING HPC JOBS

HPC systems provide an extensive scale of computational resources to its users. However,
efficiently managing and scheduling HPC workloads can be a challenging task. In this chapter,
we explore the fundamental concepts and attributes of HPC jobs and tasks, including resource
requirements, runtime limits, and dependencies. Additionally, we will discuss how graphs can be
used to represent these tasks and their dependencies, and also how they can be optimized for
performance and utilization of HPC resources.

2.1 HPC JOBS

HPC jobs involve the execution of computationally intensive tasks on large-scale com-
puting systems. These systems provide significant computational power and resources, enabling
users to solve large and complex scientific and engineering problems. In this section, we will
discuss how jobs and tasks may be defined and represented in the context of scheduling in HPC.

2.1.1 Tasks and Jobs

In the field of HPC, tasks and jobs are fundamental concepts that play a crucial role in the
efficient execution of computational workloads on HPC systems. Tasks are units of computational
work that can be independently executed and scheduled on compute resources. They represent
individual computational steps or processes that are part of a larger computational workflow,
such as simulations, data analyses, or model calculations. In turn, jobs in the HPC environment
refer to the collection of tasks that users submit to a HPC system for execution. Jobs are typically
composed of one or more tasks that are grouped together, typically in a queue, and submitted to
the scheduler along with any additional attributes about the jobs.

There are various attributes associated with HPC jobs and tasks, which provide additional
information to the scheduler on how tasks should be executed. These attributes include, but
are not limited to, resource requirements, runtime limits, priority levels, dependencies, and job
accounting. Resource requirements specify the number of CPU cores, memory, storage, and/or
any other computational resource needed for each task in the job. Runtime limits specify the
maximum amount of time that a job is allowed to run, managing the overall workload on the
HPC system. Priority levels are used to prioritize jobs based on their importance, urgency, or
user-defined preferences. Dependencies can be specified to ensure that tasks are executed in
the correct order and with the necessary data available. Job accounting data, such as CPU time,
memory usage, and I/O activity, can be tracked for reporting, billing, and performance analysis
purposes.

In the context of this research the following attributes will be further discussed and
expanded upon: resource requirements, runtime limits, and dependencies. This is mainly because
these are core attributes and/or are more relevantly represented through the structures of a graph.
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Table 1 presents the definitions for these attributes. Understanding these concepts and attributes
is essential for effective management and scheduling of HPC workloads to optimize performance
and utilization of HPC resources.

Attribute Definition

Resource Requirements The specific computational resources that a task requires to
execute successfully. This may include CPU cores, mem-
ory allocation, disk space, etc.

Runtime Limits The maximum amount of time that a task is allowed to run
before it is terminated. This is crucial for preventing tasks
from monopolizing resources and delaying other jobs in
the queue.

Dependencies The relationships between tasks that dictate their execution
order. A task is said to have dependencies when one or
more tasks need to be completed before its execution can
start.

Table 1 – Task attribute definitions.

2.1.2 Graph Representation

Graphs are mathematical structures composed of a set of vertices (also known as nodes)
and a set of edges that connect these vertices. The vertices represent entities or objects in a
system, while the edges represent the relationships or connections between them. Graphs can
be used to represent a variety of systems, such as social networks, transportation networks, and
computer networks. Figure 1 represents the basic structure of a graph. Each node or vertex is
represented as a point having a label or value (A, B and C in the context of Figure 1) that are
connected to each other by the edges, represented as arrows that demonstrate which nodes are
connected and their direction.

An edge’s direction may be omitted, which by definition implies that the edge is bidirec-
tional, or in other words, that the nodes connected by this edge have a mutual connection to each
other. Figure 2 exemplifies the differences between a directed graph (i.e., a graph where edges
have specific directions) and an undirected graph (i.e., a graph where edges are bidirectional).
Specifically directed graphs may or may not have one or more cycles in them, where a cycle is
defined as a path where you traverse the graph starting from a node and arriving on that same
node only by using the edges of the graph. It is then said that graphs with no cycles in them
are Acyclic and graphs with one or more cycles are Cyclic. In Figure 3, its possible to see an
example.

DAGs are a type of graph that has a specific set of properties. As the name suggests, a
DAG is a graph with directed edges without any cycles in it. These properties are important
because they allow for a natural representation of cause-and-effect relationships, as well as a way
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Figure 1 – General structure of a graph. Source: author.

Figure 2 – A comparison between a directed graph (left side) and an undirected one (right side).
Source: author.

to represent processes that have a clear order of steps, such as a set of tasks to be executed in a
HPC job. In the context of HPC, the inner dependencies of the jobs can be represented as a DAG,
where each task corresponds to a vertex, and the dependencies between them are represented as
directed edges. For example, if task A must be completed before task B can start, there will be a
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Figure 3 – A comparison between an acyclic graph (left side) and a cyclic one (right side).
Source: author.

directed edge from task A to task B in the DAG representation.
Representing HPC job dependencies as DAGs has several advantages. First, it provides a

clear and intuitive representation of the dependencies between tasks, which can help in the design
and analysis of scheduling algorithms. Furthermore, DAGs can be used to identify potential
bottlenecks or inefficiencies in a scheduling scheme, as well as to optimize the allocation
of resources to jobs. Finally, the use of DAGs can facilitate the development of automated
scheduling algorithms, as the graph structure can be used to guide the scheduling process, since
it can represent important information about the inner connections of a job, which can lead to a
better allocation that is sensitive to this type of information.

2.2 SCHEDULING DAGS

DAGs are an useful way to portray some aspects of the scheduling problem, providing the
representational power and theoretical background needed to perform a practical analysis of these
elements. In this section, we will discuss scheduling in HPC using DAGs as a representational
tool along with metric definitions for the performance assessment of the scheduling process.

2.2.1 Concepts and Definitions

In HPC, jobs typically represent computationally intensive tasks that require significant
amounts of processing power and memory. Examples of HPC applications include scientific
simulations, data analytics, and machine learning. The goal of job scheduling is to allocate
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compute resources to jobs in an efficient and effective manner, in order to minimize the overall
execution time and maximize the utilization of available resources. However, this is a complex
problem due to the large number of jobs and the limited availability of compute resources. In
addition, jobs may have inner dependencies, which means that their tasks need to be executed in
a specific order.

The job scheduling problem in HPC can be divided into several sub-problems, such
as resource allocation, task mapping, and job prioritization (SHAH; MAHMOOD; OXLEY,
2010). Resource allocation involves determining which compute resources (such as processors
or memory) should be allocated to each job. Task mapping refers to the assignment of individual
tasks within a job to specific compute resources, while job prioritization involves determining
the order in which tasks and jobs should be executed, taking into account their dependencies
and other factors such as their expected execution time and impact on the availability of the
system. Addressing these sub-problems requires the development of scheduling algorithms that
can effectively balance the competing demands of resource utilization and job execution time. In
parallel, HPC datacenters are typically represented as a collection of compute nodes or servers
interconnected by a high-speed network (BRUCKER, 1999). These compute nodes are equipped
with processors, memory and other resources that can be allocated to execute jobs.

In HPC environments, jobs are often modeled as DAGs to represent task dependencies and
other relationships. Each task in a job is a node, and dependencies are depicted as directed edges.
DAG modeling enables a fine-grained representation of job requirements, however, the presence
of task dependencies complicates scheduling. Tasks cannot run until their dependencies are com-
plete, requiring a correct execution order. As the number of tasks and dependencies increases, the
scheduling problem becomes computationally demanding (HOOGEVEEN; LENSTRA; VELT-
MAN, 1996). In addition, resource constraints further complicate DAG-based job scheduling,
requiring sophisticated algorithms to optimize resource utilization while satisfying dependencies.

Along with these inevitable challenges that arise from the introduction of complex
relationships between the tasks of a job comes the representational power of graphs when
represented as DAGs. This means that a mature field of mathematics comes along with this
representation, bringing concepts, techniques, algorithms and more (WEST et al., 2001) that
have been defined, studied and improved over time. Some of these concepts that may be useful
for scheduling DAGs include, but are not limited to, topological sorting, critical path, node
coloring, node degree, etc.

In this context, scheduling DAGs involves determining the order in which tasks should
be executed and which of the available compute resources should be allocated to process
them. This requires careful consideration of task dependencies, resource availability, and other
factors. Various scheduling algorithms have been developed to address this problem, such as
list scheduling, priority-based scheduling, and backfilling (CASANOVA et al., 2023). These
algorithms aim to minimize or maximize certain indicators of a datacenter’s performance, often
called metrics.
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2.2.2 Metrics and objectives

In the context of HPC scheduling, the choice of appropriate metrics and objectives
is crucial to evaluate and compare the performance of different schedulers (FEITELSON;
RUDOLPH, 1998b). Metrics provide quantitative measures of the performance of a scheduling
algorithm, while objectives represent the goals or targets that a scheduler aims to achieve.

A commonly used metric in HPC scheduling is slowdown, which measures the ratio
between the actual execution time of a job and its ideal execution time, which is the time it would
take to complete the job alone without contention for resources (FEITELSON; RUDOLPH,
1998b). The slowdown metric is a normalized value that reflects the efficiency of resource
allocation, as higher slowdown values indicate longer waiting times and resource contention,
leading to decreased performance. Additionally, the slowdown metric may be bounded by setting
a minimum value for the ideal execution time, preventing smaller and faster jobs from having
massive slowdown values from small delays that, compared to the size of the job, appear to be
more impactful than they actually are (FEITELSON; RUDOLPH, 1998a).

Another commonly used metric is the node’s usage percentage, which represents the
proportion of resources that a server node is actively using to perform computational tasks
compared to the total resources it is available for use. This metric reflects the overall utilization
of resources and the ability of the scheduler to efficiently use the system resources.

There are several other common metrics used in HPC scheduling to guide and evaluate
the performance of scheduling algorithms. These include makespan, which measures the total
time taken to complete all jobs in the system; resource utilization, which quantifies the extent to
which available resources are utilized during the scheduling process; fairness, which assesses the
equitable distribution of resources among jobs; energy efficiency, which evaluates the energy
consumption of the system during scheduling; and deadline adherence, which measures the
ability of a scheduling algorithm to meet specified deadlines for completing jobs.

The set of metrics that are most relevant depends on the type of system, with a classifi-
cation being the distinctions between online and offline systems combined with the difference
between open and closed online systems (FEITELSON; RUDOLPH, 1998a). In this classifi-
cation, an offline system assumes that all the jobs have already arrived, leaving no space for
additional jobs to be included after the scheduler’s policy execution. In online systems there are
jobs arriving over time, with closed systems having a fixed upper bound on the number of jobs
that are capable of being in the system at any single point in time, which does not exist in open
systems where the jobs arrive in streams of indeterminate size.

As seen in Figure 4, the common metric for open online systems is slowdown; however,
for closed online systems it is the throughput metric, which measures the number of tasks
completed per unit of time, indicating the system’s processing capacity. Finally, for offline
systems, it is the makespan metric, representing the total time taken to complete all jobs. As the
systems addressed in this work vary between offline, online open or online closed, the metrics

26



24

selected are justified by being representative metrics used for scheduling policy performance
analysis.

In this sense, we selected metrics that are related to slowdown, throughput, and makespan
as main metrics to represent both the user’s and infrastructure’s perspectives.

These metrics will be further discussed in Chapter 5.

Figure 4 – Common metrics used in each classification. Source: adapted from (FEITELSON;
RUDOLPH, 1998a).

2.3 CONSIDERATIONS

In this chapter, we introduced the fundamental concepts of HPC jobs and tasks, and
their associated attributes, which are essential for effective management and scheduling of HPC
workloads. We also discussed the graph representation of dependencies between tasks, and how
DAGs are used to represent dependencies between tasks in HPC workflows.

When managing HPC workloads, it is important to consider the resource requirements
and runtime limits of each job, as well as any dependencies between tasks, in order to optimize
the performance and utilization of HPC resources. In the following chapters, we will discuss how
machine learning techniques can be applied to the scheduling problem in HPC environments.
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3 MACHINE LEARNING APPLIED IN HPC SCHEDULING

Machine Learning (ML) is a subset of Artificial Intelligence techniques that learn from
data by recognizing patterns in it and extrapolating information from the probabilistic distribu-
tions identified in the data. ML algorithms can be categorized into four main learning paradigms:
supervised learning, semi-supervised learning, unsupervised learning, and reinforcement learn-
ing.

In HPC scheduling, ML can be applied in different forms and subprocesses. In addition,
these models may be used at an upper level of abstraction. The application of ML in HPC
scheduling is only constrained by the data, and as long as there is the possibility of acquiring
structured data with significant probabilistic correlation and in sufficient quantity for a given
ML-based technique, a model can be constructed as a solution to extrapolate the data and predict
or classify new examples to solve one or more parts of the HPC scheduling problem.

3.1 CONCEPTS AND DEFINITIONS

Techniques based on ML heavily depend on the structure, volume and quality of the
data that is fed to the algorithm (MAHESH, 2020). This means that ML-based algorithms try
to recognize patterns in the data, extrapolating information from the probabilistic distribution
of examples given to them without being explicitly informed of the data’s correlation to each
other. The way in which these algorithms arrive at the final solution may vary from technique to
technique, however, they are all founded on the same idea of learning from data.

Given that the application of ML is only constrained by the data, there are multiple steps
in the scheduling process in which ML-based solutions can be used (ZARANDI et al., 2020).
As long as there is the possibility of acquiring structured data with significant probabilistic
correlation and in sufficient quantity for a given ML-based technique, a model can be constructed
as a solution to extrapolate the data and predict or classify new examples to solve one or more
parts of the HPC scheduling problem.

More specifically, these models can be used as end-to-end schedulers or as additional
information extractors for other systems or models (ZARANDI et al., 2020). Also, these models
may be used in an upper level of abstraction, such as classifiers, to choose another scheduler
solution that the model has been trained to identify as the best fit for the job load and/or environ-
ment state. As the history of the research field indicates, it is possible that other applications for
ML-based models will be presented as the exploration and discovery of new techniques develop,
along with the application and combination of new and existing techniques at different levels of
the scheduling problem.

The techniques in ML can be categorized in different ways, a common classification is
through the learning paradigm (MAHESH, 2020), which is the method in which data is used
to train the algorithms. In Figure 5 there is a visual representation of the division of techniques
by the learning paradigm, along with examples of sub-techniques that are derived from each
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paradigm. The four main learning paradigms in ML are supervised learning, semi-supervised
learning, unsupervised learning, and reinforcement learning (MAHESH, 2020).

Supervised learning is a type of learning in which an algorithm learns from labeled data.
The algorithm is trained on a dataset that includes input data and the corresponding output or
target values. The goal of supervised learning is to create a model that can accurately predict the
output for new unseen data. Examples of supervised learning algorithms include: Decision Trees,
Linear Regression, Support Vector Machines, among others.

Semi-supervised learning is a paradigm in which an algorithm learns from both labeled
and unlabeled data. The algorithm is trained on a dataset that includes both labeled data and a
larger set of unlabeled data. The goal of semi-supervised learning is to improve the accuracy
of the model by leveraging the additional unlabeled data. Some examples of semi-supervised
learning include: Label Propagation, Self-Training, etc.

In turn, unsupervised learning algorithms learn from unlabeled data. The algorithm
is trained on a dataset that includes only input data, without any corresponding output or
target values. The goal of unsupervised learning is to identify patterns and relationships in the
data. Examples of unsupervised learning algorithms include: K-Means Clustering, Principal
Component Analysis, etc.

Finally, reinforcement learning is a type of learning in which an algorithm learns through
trial and error. The algorithm is trained in an environment in which it can take actions and receive
rewards or penalties based on its actions. The goal of reinforcement learning is to learn a policy
that maximizes cumulative rewards over time. Examples of reinforcement learning algorithms
are as follows: Q-Learning, Markov Decision Process, among others.

Figure 5 – Classification of Machine Learning Techniques. Source: the author.

Some methods are more prolific than others; for example, artificial neural networks are
a ML technique that has seen a considerable increase in research and development recently,
especially with the application of Deep Learning to build models through supervised and

29



27

reinforcement learning (LECUN; BENGIO; HINTON, 2015). These models use large-sized
neural networks and are trained with large datasets using HPC systems with dedicated hardware
to find complex patterns in the datasets, which has been successful in a growing number of fields
such as image recognition, natural language processing, and even HPC scheduling (LECUN;
BENGIO; HINTON, 2015; FAN et al., 2021).

3.2 NEURAL NETWORKS AND GRAPHS

As Neural Networks developed and became a prominent technique in Machine Learning
along with the aforementioned usefulness of graphs for representing and analyzing systems with
complex relationships, their intersection would be inevitable. However, despite the progress
made in both of these fields of research, there were limitations of classical Neural Networks when
working with graph-structured data, since these networks operate with fixed-sized tensor-shaped
inputs, which do not provide a natural way of handling graphs of varying sizes and structures.
This initially required the transformation of the graph-represented data to another format, one
accepted by the constraints of the network’s input that carried with it problems with scalability
and the partial destruction of the graph’s dynamic representational power.

Integrating graph structures into classical neural networks requires workarounds due to
their inherent differences. Several techniques have been proposed, such as utilizing adjacency
matrices to capture pairwise relationships, employing graph coloring algorithms to represent a
graph as a vector of colorization, or considering node degrees as features. While these techniques
enable the incorporation of graph information into traditional Neural Networks, they often
result in a loss of the inherent representational power of pure graph structures. The simplified
representations obtained through these workarounds fail to capture the rich topological and
structural characteristics of graphs, limiting the ability to effectively model intricate dependencies
and interactions present in real-world scenarios. Consequently, while these techniques offer
valuable insights into integrating graphs with neural networks, a more graph-centered model of
neural networks was needed to not leave the domain of graph representation, consequently not
losing its representational strengths.

Even with the advent of Deep Learning, which proved to be better suited for some class
of problems that represent hierarchical data, the dense networks still struggled with the same
problems of disparity between the input’s constraints and the dynamism of graph-structured
data. With this in mind, researchers working with graph data and Neural Networks worked in the
development of a type of Neural Network that could better handle graph-structured data in a way
that preserves the information of the graph.

3.3 GRAPH NEURAL NETWORKS

Graph Neural Networks are a type of neural network designed to operate on graph-
structured data (SCARSELLI et al., 2008; MICHELI, 2009). In a GNN, each node in the graph
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is represented by a feature vector and the edges between nodes indicate the relationships between
them. The goal of GNNs is to learn a representation of the entire graph that can be used for
various tasks, such as node classification, graph classification, and link prediction. A GNN
typically consists of several layers, each of which updates the feature vectors of the nodes based
on their current values and those of their neighbors in the graph. The basic operation of a GNN
layer can be described as follows:

1. Compute the message vector for each edge of the graph, which is a function of the feature
vectors of the nodes at the endpoints of the edge.

2. Aggregate the message vectors for each node, typically by taking their sum or average.

3. Apply a transformation to the aggregated message vector for each node, typically a neural
network layer.

The basic building block of a GNN layer is the message passing operation. In this
operation, each node in the graph aggregates the features of its neighboring nodes and computes
a new feature vector based on this aggregation. In this way, the goal of the network is to better
manipulate and aggregate these messages, preserving the graph structure and learning from the
connections and values in the graph, which is the core of a graph’s representational power. The
message passing operation can be formalized as follows:

mi→ j = M(hi,h j)

where hi and h j are the feature vectors of nodes i and j respectively, and M is a function
that computes the message sent from node i to node j. The message mi→ j represents the
information that node i sends to node j. After the messages have been passed between the nodes,
a node updates its feature vector by aggregating the messages it has received, generating h′i. This
operation can be formalized as follows:

h′i =U(hi, ∑
j∈N (i)

m j→i)

where N (i) is the set of neighboring nodes of node i, and U is a function that updates
the feature vector of node i based on the messages it has received. There are many different
choices for the message passing and node update functions. Using the Graph Convolutional
Network (GCN) layer (KIPF; WELLING, 2016) as an example, it uses the following message
passing and node update functions:

mi→ j =
1

|N (i)|
W lhi

h̃i = ∑
j∈N (i)

m j→i +W lhi
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h′i = σ(h̃i +bl)

where W l is a weight matrix for the l-th layer of the network, bl is a bias vector, and σ is
a non-linear activation function.

The output of a GNN layer is a new set of feature vectors for the nodes, which can be
used as input to the next layer of the network. The process is repeated for several layers until a
final representation of the graph is obtained.

Several variations of the basic GNN architecture have been proposed in the literature,
including the Graph Convolutional Network (GCN), Graph Attention Network (GAT), and Graph-
SAGE (ZHANG et al., 2019; VELIČKOVIĆ et al., 2017; HAMILTON; YING; LESKOVEC,
2017). These models differ in their specific implementation of the message passing and ag-
gregation steps, as well as in the choice of activation functions and regularization techniques.
Different GNN variants have varying performance across problem domains, depending on their
architectural characteristics. Choosing the most appropriate variation of GNN for a particular
problem set enhances the effectiveness of graph-based learning and analysis.

For example, the Graph Attention Network (GAT) is a variant of the GNN that is designed
to capture the importance of different nodes in a graph by assigning attention weights to them.
These attention weights are learned during the training process and used to compute a weighted
sum of the node features. Unlike the Graph Convolutional Network (GCN), which aggregates
information from neighboring nodes using a fixed graph convolution operation, the GAT uses
a self-attention mechanism to dynamically compute the attention weights for each node. This
allows the model to focus on the most relevant nodes for a given task, rather than treating all
nodes equally, by assigning weights right before the same message-passing cycle explained
above takes place.

GNNs have been successfully applied to a variety of graph-based tasks, including social
network analysis, protein structure prediction, and recommendation systems (WU et al., 2020).
In the context of HPC scheduling, GNNs can be used to learn a representation of the DAG
that captures the dependencies between tasks and the available computational resources. This
representation can then be used to predict a scheduling policy fit for a given set of tasks and
resources, potentially leading to improved performance and efficiency of the HPC system,
depending on the metrics chosen to be optimized.

3.4 RELATED WORK

To investigate and highlight some aspects in the body-of-work portraying scheduling with
GNNs, this section presents a review and systematic mapping of papers presenting scheduling
solutions modeled with GNNs. The listed articles will be discussed and reviewed, primarily
seeking relevant patterns for the research questions.
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To conduct this review, we employed specific search terms to identify relevant literature.
The search words used to find the papers are "(’schedule’ OR ’scheduling’) AND (’graph neural

network’ OR ’graph convolutional network’ OR ’graph attention network’)". We searched
for papers in the following research databases: ACM Digital Library1, IEEE Xplore2, Web of
Science3, ScienceDirect4, Scopus5, and Engineering Village6.

The main objective of this systematic mapping is to identify how GNNs are being used
to solve scheduling problems. Specifically, our objective is to identify the variants of GNNs
being used, the performance of the solutions compared to classic algorithms, and the learning
paradigm used in the development of these solutions. To achieve this objective, we have defined
the following selection criteria:

Objective Criteria: (i) only papers published after 2009 will be included; (ii) only
papers from journals and events will be included; and (iii) only papers written in English will be
included.

Inclusion Criteria: (i) only articles that solve scheduling problems using graph neural
networks will be included; and (ii) only primary works will be included, i.e., no secondary
studies or reviews.

Exclusion Criteria: (i) articles that are not available for download will be excluded; and
(ii) papers that do not include GNNs as an integral part of a solution to the scheduling problem
will be excluded.

We believe that these criteria enable us to identify the most relevant works in this field
and ensure that our review is comprehensive and relevant. Following these selection criteria, our
aim is to identify the most recent and relevant research studies related to the use of GNNs to
solve scheduling problems. In Table 2, it is possible to see a list of all selected works, together
with the type of learning technique, the type of GNN-derived technique used, an indication of
whether the scheduler achieved better performance than classical algorithms from the literature,
and the year of publication.

The following sections provide a summary, chronologically, of the chosen research
studies, classified into two distinct classes: HPC Environment and Non-HPC Environment. For
each class, an overview is offered for the proposals, detailing which specific problem each study
is solving, what variant of GNNs it is using, how the model’s training is being conducted, and the
model’s relative performance. This organization helps establish a historical context, identifying
gaps and potential avenues for further exploration.
1 https://dl.acm.org/
2 https://ieeexplore.ieee.org/Xplore/home.jsp
3 https://www.webofscience.com/wos
4 https://www.sciencedirect.com/
5 https://www.scopus.com/home.uri
6 https://www.engineeringvillage.com/home.url
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Work Learning Technique Performance HPC Related Year
(HU et al., 2020) Reinforcement GCN Better No 2020

(WANG; GOMBOLAY, 2020) Hybrid GAT Better No 2020

(GRINSZTAJN et al., 2020) Reinforcement GNN Better Yes 2020

(KIAMARI; KRISHNAMACHARI, 2021) Supervised GCN Better Yes 2021

(NI et al., 2021) Reinforcement GCN Better No 2021

(ZHAO et al., 2021) Supervised GCN Better No 2021

(PARK et al., 2021) Reinforcement GNN Better No 2021

(JING et al., 2022) Reinforcement GCN Better No 2022

(LEI et al., 2022) Reinforcement GNN Better No 2022

(LIN et al., 2022) Reinforcement GAT Better Yes 2022

(LIU et al., 2022) Reinforcement GNN Undefined No 2022

(PENG et al., 2022) Reinforcement GCN Better Yes 2022

(WANG et al., 2022) Reinforcement GCN Undefined Yes 2022

(ZHANG et al., 2022) Reinforcement GCN Better No 2022

(ZHOU et al., 2022) Reinforcement GNN Better Yes 2022

(DING et al., 2022) Supervised GCN Better No 2022

(WANG; GOMBOLAY, 2022) Reinforcement GNN Better No 2022

(SONG et al., 2023) Reinforcement GCN Better Yes 2023

(XING et al., 2023) Reinforcement GAT Better No 2023

Table 2 – Related work review. Source: the author.

3.4.1 HPC Environment

In this subsection, we focus on papers that apply GNNs HPC environments. These works
typically address the challenges and complexities inherent in HPC systems. Initially, in the
study by (GRINSZTAJN et al., 2020), the authors addressed the challenge of dynamic DAG
scheduling in HPC environments. The solution employs a GNN leveraging a geometric deep
reinforcement learning approach, specifically an actor-critic algorithm known as A2C. The
GNN is designed to build an adaptive representation of the problem, dynamically adjusting to
runtime system states and unexpected events, thereby offering a flexible scheduling mechanism.
This GNN-based scheduler demonstrates competitive performance against established HPC
scheduling heuristics. The adaptability of the methodology to incorporate additional knowledge
for performance improvement further highlights its potential for broader applications in complex
scheduling scenarios.

In the research done by (KIAMARI; KRISHNAMACHARI, 2021), the authors used
a GCN, a variant of GNNs, to produce a scheduler for applications in large-scale distributed
systems. The work uses HEFT and TP-HEFT algorithms (GALLET; MARCHAL; VIVIEN,
2009) to train a GCN and expand problem solving capabilities on a larger scale than deterministic
algorithms can handle. The algorithms generate labels for Supervised Learning, which are later
evaluated in scenarios with increasing workloads and different optimization objectives. The
solution developed in the paper achieved performance similar to deterministic algorithms in
smaller-scale scenarios and superior performance in larger-scale scenarios, maintaining an order
of magnitude lower decision-making time.
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In the research of (PENG et al., 2022), the authors also used a GCN to develop a scheduler,
this time using Reinforcement Learning, in which the model interacts with an environment and
receives rewards according to its performance. In this article, the GCN is used both as a decision-
making model and for inference of certain aspects about the element being scheduled, which are
workflows to be executed in a Cloud Computing environment, modeled in the form of DAGs.
The produced model presented superior performance when compared to classical algorithms (i.e.,
SJF and Random) and also other Reinforcement Learning models (i.e., AC, Tetris, and PPO),
achieving gains of 2-10% in reduction of makespan, as well as gains of up to 20% in resource
utilization.

The authors of (WANG et al., 2022) presented MAGCIS, a multi-agent model based
on Reinforcement Learning that uses a combination of Graph Convolutional Networks with
Recurrent Neural Networks to produce a task scheduler in a Cloud Manufacturing environment,
a recent concept in which consumers submit requests for manufacturing processes online that are
distributed, using Cloud Computing and Edge Computing, to geographically distributed industrial
manufacturing resources. In the work, a case study is analyzed for the manufacturing processes of
structural aircraft parts, in which MAGCIS outperforms other Reinforcement Learning methods,
but there is no information on performance compared to classical deterministic algorithms in the
literature.

In the paper by (LIN et al., 2022), a scheduler for jobs represented in the form of DAGs
is proposed using Graph Neural Networks with Attention, which is a variant of GNNs proposed
by (VELIČKOVIĆ et al., 2017) that uses attention mechanisms (VASWANI et al., 2017) to
focus on specific edges of the graph. The scheduler model was trained using Reinforcement
Learning with heterogeneous loads. After training, an extensive comparison with various classical
deterministic, heuristic, and metaheuristic algorithms was conducted, including algorithms such
as the aforementioned HEFT (GALLET; MARCHAL; VIVIEN, 2009), HTDG (SULAIMAN et
al., 2021), HDPSO (SHIRVANI, 2020), among others. The produced model showed superior
performance in all different scenarios, with an average reduction of 12. 38% in the slowdown
and average completion time metrics.

The authors of (ZHOU et al., 2022) presented LACHESIS, a job scheduler that uses
a GNN model trained using Reinforcement Learning techniques on data from a well-known
datacenter benchmark called TPC-H7. This benchmark is notorious for being used by companies
such as Microsoft, IBM, Oracle, Nvidia, among others, for almost three decades. After training
through interaction with a simulated environment, the scheduler was extensively compared with
classical literature algorithms (e.g., FIFO, SJF, among others), as well as heuristics that include
the aforementioned HEFT (GALLET; MARCHAL; VIVIEN, 2009) and others. In addition,
other probabilistic machine learning-based algorithms were also included in the comparisons.
The presented scheduler achieved the best performance in all scenarios, sometimes achieving an
improvement of 26.7% in the makespan metric and 35.2% in Speedup.
7 https://www.tpc.org/tpch/
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In (SONG et al., 2023), the authors presented a GCN-based model for the scheduling of
job DAGs in heterogeneous computing environments. The solution was modeled in such a way
that the network was used to extract features from the DAGs that were fed to a policy network for
computing node selection. The model was trained used Reinforcement Learning in a simulated
environment. When compared to classical job scheduling algorithms, the proposed solution had
superior performance, getting better results in the average job cost, parallel performance, stability
and other evaluation metrics.

3.4.2 Non-HPC Environment

In this subsection, we explore the papers where GNNs are utilized for scheduling in
environments other than HPC. This includes a variety of domains that may be adjacent to HPC
but aren’t defined by the body of work as such.

In the article by (HU et al., 2020), the authors proposed a Reinforcement Learning
model based on a GCN using layers modified by the authors to better fit problems modeled in
graphs representing Petri Nets. The model aims to schedule Flexible Manufacturing Systems
for production line optimization and does so through the interaction of the model with a virtual
representation of the real production line. The model presented superior results compared to
deterministic algorithms, such as FCFS+ (YOU; WANG; ZHOU, 2015) and D²WS (LUO et
al., 2014), as well as showing greater resilience to changes in the structure of the environment
compared to other Reinforcement Learning methods.

In the work of (WANG; GOMBOLAY, 2020), a task scheduler was presented for coordi-
nating movements and interactions between robots. The presented scheduler uses a GAT network
trained through a combination of Supervised Learning, along with Reinforcement Learning in a
simulated environment. After training, the scheduler called RoboGNN was compared with three
other algorithms from the literature: the heuristic algorithm EDF (HELLERMAN, 1969), the
state-of-the-art hybrid algorithm Tercio (GOMBOLAY; WILCOX; SHAH, 2018), and finally,
the linear programming solver software Gurobi that finds the optimal result through a compu-
tationally intense process. The comparison between the schedulers was made with increasing
numbers of robots and task complexity. RoboGNN achieved better makespan than EDF in all
scenarios and results close to or even better than Tercio. Furthermore, RoboGNN was still able
to solve more problems than EDF and Tercio, maintaining between 89.3% and 91.5% resolution
rate, while EDF and Tercio remained between 0% and 62%. Additionally, RoboGNN maintains
this performance with 100 times speedup compared to the exact method using Gurobi.

In the work by (ZHAO et al., 2021), a request scheduler for wireless networks was
presented, which combines a GCN with greedy algorithms. The GCN is used to generate an
approximate representation of the optimal embedding of the current network state and then uses
greedy algorithms for scheduling decision-making. The GCN is trained through Supervised
Learning using random and heterogeneous graphs provided by (ERDŐS; RÉNYI et al., 1960)
and (ALBERT; BARABÁSI, 2002). Finally, the trained model was compared to greedy heuristic
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algorithms LoGreedy (JOO; SHROFF, 2011) and MP (PASCHALIDIS; HUANG; LAI, 2014),
achieving results between 3% and 5% closer to the optimal result than its competitors.

In (NI et al., 2021), a authors proposed a scheduler based on a GCN combined with
a neural network with attention mechanisms for scheduling jobs in the context of industrial
automation in warehouses. Reinforcement Learning techniques were used for training, and two
distinct databases were used, one of them being a standard test database and the other a real
database captured during automation execution. After training, the model was compared with a
classic metaheuristic algorithm known as IteratedGreedy (IG) (RUIZ; STÜTZLE, 2007). Results
in different scenarios showed the presented scheduler as superior, achieving on average a 53%
better performance compared to IG, with no statistically significant changes in decision-making
time.

In (PARK et al., 2021), the authors introduced the GNN-RL scheduler model, which uses
a GNN trained through Reinforcement Learning to predict a parameterized scheduling policy,
using the prediction of probability density functions for job scheduling decision making. To test
the model, a simulation environment of Job-shop Scheduling Problem (JSSP) was proposed,
in which the proposed model and other classic job scheduling algorithms would interact with
synthetic data loads. The results showed that the GNN-RL model obtained consistently lower
error rates in all proposed load scenarios, demonstrating superior performance compared to
classical algorithms.

In the research done by (LIU et al., 2022), a framework was presented for modeling the
problem of flexible scheduling of jobs (i.e., a set of tasks with some type of dependency) for
traffic control, using GNNs in the form of Reinforcement Learning. The authors use Graph Neural
Networks competing with each other within an environment that provides rewards according to
performance in scheduling jobs, which are also represented in the form of DAGs, similar to the
work by (PENG et al., 2022) but using other techniques of GNNs and Reinforcement Learning.
The model presented similar results to other Machine Learning techniques, but there were no
comparisons with deterministic algorithms in the literature.

On the other hand, the work by (LEI et al., 2022) also addressed the problem of flexible
scheduling of jobs by defining a framework for developing Reinforcement Learning-based
models. The problem is modeled through graphs representing the structure of Multiple Markov
Decision Processes, which serves as input to a GNN that will make the scheduling decision.
Several stochastically generated scenarios were assembled, and a model was generated and
compared to several other classical algorithms and state-of-the-art meta-heuristic algorithms.
The generated model was extensively tested and consistently showed results that outperformed
deterministic algorithms and approached state-of-the-art meta-heuristic results, while maintaining
a consistently better decision-making time in all scenarios.

In the work of (ZHANG et al., 2022), the authors addressed the scheduling of DAGs in a
Vehicular Edge Computing context, taking into account scenarios with significant network delays.
Using Reinforcement Learning techniques, the authors used a GCN trained on both stochastic
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data and real communication scenarios. The model interacts with an environment that provides a
reward based on the makespan metric, which is the target metric of the work. After training, the
generated scheduler was compared with the classical algorithms HEFT (GALLET; MARCHAL;
VIVIEN, 2009), LC (KIM, 1988), and CPOP (TOPCUOGLU; HARIRI; WU, 2002). In addition,
Machine Learning-based algorithms were also used in the comparison. When compared to
Machine Learning algorithms, the proposed scheduler achieved performance improvement (i.e.,
reduction of makespan) between 8% and 15%, while when compared to classical algorithms, the
improvement in performance ranges from 15% to 25%.

In (JING et al., 2022), the authors presented another job scheduling algorithm based
on GCNs with Reinforcement Learning, this time in an Internet of Things in Manufacturing
scenario. The scheduler, called GMAS, was trained on multiple consolidated datasets, aiming
to optimize multiple metrics such as makespan, CPU time, among others, depending on the
scenario. The generated algorithm was extensively compared with classic algorithms as well as
state-of-the-art meta-heuristic algorithms, consistently obtaining better results in both compar-
isons, maintaining scalability through a technique of transposing the scheduling problem into a
probability distribution prediction problem.

In (DING et al., 2022), the authors presented a model for predicting communication load
and energy usage in Road Side Units (RSUs) integrated with vehicular communication networks,
using multiple GCNs trained with Supervised Learning to assist other Machine Learning models,
this time trained with Reinforcement Learning, in the task of scheduling energy harvesting
and signal transmission. The algorithm is compared with other predictive models and also
with traditional algorithms, the latter being surpassed by the model presented in all measured
efficiency metrics, reaching up to 50% better performance in some scenarios.

In the article by (WANG; GOMBOLAY, 2022), the authors presented a maintenance
scheduling model for a fleet of aircraft, using a technique they introduced for Reinforcement
Learning called HetGPO. The technique involves the interaction of the scheduler with a virtual
benchmark environment called AirME, to adjust the weights of a GNN that tries to maximize the
performance of aircraft maintenance teams through efficient scheduling of maintenance tasks.
The trained model was then compared with classical and heuristic methods, showing superior
performance in small, medium, and large-scale scenarios, achieving results between 16.5 and
17.7% better in the availability metric and between 27.5 and 29.1% superior in the total profit
metric when compared to classical schedulers and heuristics.

Finally, in the work of (XING et al., 2023), a GAT-based model is presented as a
scheduling assistant solution for scheduling power supply in Active Distribution Networks, i.e.,
a modern, technology-enabled electric power distribution system that allows for bidirectional
power flow and advanced grid management. The GAT model was trained using Reinforcement
Learning and performed better than classical approaches in metrics such as power loss per
MWh, voltage deviation per power unit, operation cost and others. The solution was specially
remarkable under special electrical fault scenarios where it surpassed other approaches by being
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more dynamic under topology variations.

3.4.3 Discussion and challenges

The increase in the number of articles in each year shows a growing trend in the use
of GNNs for developing solutions to the scheduling problem, which may be related to recent
developments in the technique. Although GNNs have been introduced more than a decade ago,
they have recently been explored with the creation of more powerful and suitable variants for
large-scale problems. Furthermore, the growth in data availability and computational resources is
a factor for recent development in the field of Machine Learning (LECUN; BENGIO; HINTON,
2015), which may also be a contributing factor to the increase in the number of articles. It is also
interesting to note that although the objective criteria include articles from 2009 onward, which
was the year of publication of the first GNN, only recent articles that met all the requirements
imposed in this work were found.

Despite extensive research, there is a notable scarcity of papers at the intersection of
GNNs, scheduling, and HPC in the sources used for this related work section. Even after extensive
search through popular scientific repositories, the combination of these three elements remains
underexplored compared to the larger field. Consequently, this work seeks not only to further
explore the intersection of GNNs, scheduling and HPC, but also to extend the investigation to
the application of GNNs in scheduling problems outside of HPC environments. This broader
approach aims to underline the value that GNNs bring to the domain of scheduling problems,
regardless of the specific environment.

The surveyed papers predominantly present positive outcomes when compared to clas-
sical algorithms, suggesting that GNNs can be a useful tool for solving scheduling problems.
However, challenges emerge, particularly when applying GNNs using Supervised Learning,
which represents a significant gap in the existing literature. This gap is of particular interest to
the current work, which seeks to explore and potentially address the hurdles associated with
implementing Supervised Learning methods in GNN-based scheduling solutions.

Table 3 shows the distribution of published papers from the related work in relation to the
techniques derived from GNNs, with a clear majority for GCNs, followed by similar proportions
of GNNs and GATs. This indicates a greater popularity of GCNs, which may be due to the short
exploration time of GATs that were introduced in the literature in 2017. Finally, the use of pure
GNNs seems to be trending towards being replaced by their variants.

Technique Published Papers Percentage
GCN 10 52.6%

GNN 6 31.6%

GAT 3 15.8%

Table 3 – Published papers by technique. Source: the author.

Table 4 illustrates the distribution of works by the type of learning used in the networks,
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with a majority for Reinforcement Learning and a minority divided between Supervised and
Hybrid Learning, the latter being just a combination of Supervised and Reinforcement Learning
during training. The predominance of the use of Reinforcement Learning can be attributed to
the difficulty of obtaining labeled data for combinatorial problems, since obtaining the optimal
result becomes computationally infeasible depending on the desired scale.

Learning Paradigm Published Papers Percentage
Reinforcement 15 78.9%

Supervised 3 15.8%

Hybrid 1 5.3%

Table 4 – Published papers by learning paradigm. Source: the author.

Finally, Figure 6 shows the Systematic Mapping of the literature indicating the density
of works in the intersection between GNN-derived technique and type of learning. Notably,
the learning types were reduced to Supervised and Reinforcement, with Hybrid counted as a
record for both, since it was nothing more than an application of both techniques to different
data. Figure 6 demonstrates possible research gaps, especially in Supervised Learning, a class
that obtained little representation in the articles found for reasons discussed previously.

Figure 6 – Bubble Plot of the Systematic Mapping

Thus, it is possible to conclude that the literature, for the most part, uses the GCN variant
through Reinforcement Learning for the production of schedulers that have performance above
the classical schedulers in the literature. The literature seems to specially lack solutions using
Supervised Learning, possible reasons for it include the challenge of acquiring reliable and
clean representative data for the learning process, the difficulty of modeling such data due to the
complex nature of scheduling problems, etc. Another aspect lacking is the amount of solutions
using GAT, which utilizes a technique that demonstrated to be specially suitable for combinatorial
problems (VELIČKOVIĆ et al., 2017), i.e., the attention mechanism. The scheduling problem
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being a combinatorial one may benefit from this mechanism the same way sequence-to-sequence,
a combinatorial problem in nature, has benefited from the attention mechanism (VASWANI et
al., 2017).

3.5 CONSIDERATIONS

In this chapter, we have discussed how Machine Learning (ML) is applied as a solution
or as an assistance to the solution to the job scheduling problem inside and outside of the context
of HPC. We also discussed how the usage of ML affects the modeling of the scheduling problem,
along with all the constraints the techniques usually bring with them. Furthermore, we have
discussed how the representation of the scheduling problem using DAGs interacts with the
usage of ML-based solutions, the main challenges of the combination of these concepts and how
Graph Neural Networks (GNNs) solve some of these issues. Finally, the related work has been
presented in the form of a systematic mapping of the research area with respect to GNNs applied
to the solution of the job scheduling problem.

The systematic mapping carried out in this study demonstrates the growing trend in the
use of GNNs to develop scheduling solutions. The popularity of GCNs can be attributed to its
long exploration time compared to other variants such as GATs. Reinforcement Learning remains
the most utilized learning type due to the difficulty in obtaining labeled data for combinatorial
problems. However, there is a clear gap in the literature on the use of Supervised Learning
for scheduling problems. This could be due to challenges in acquiring representative data and
modeling them due to the complex nature of the scheduling problem.

The application of ML-based techniques in HPC scheduling has been a research field
for many years; however, as the ML field is further pushed to new grounds and techniques are
improved, we can expect new state-of-the-art algorithms to be derived from the intersection
of these fields, as has happened with many other fields in recent years (LECUN; BENGIO;
HINTON, 2015). But since the field branches into many different approaches, each new technique
arises with strong and weak points, which means that further research is needed to see in which
scenario each technique inside of ML can be better used. The motivation for this research arises
from the lack of studies comparing variants of GNNs trained with reliable Supervised Learning
to solve the scheduling of jobs modeled as DAGs in the context of HPC. As GNNs are suited
for problems modeled with graphs, there is a natural interest in applying it to problems similar
to job scheduling for its natural representation using graphs. However, as representative data
is not so easily acquireable for such a problem, due to its computational complexity at higher
scales, many researchers opt to use Reinforcement Learning, which is a valid solution since as
the model interacts with an environment it may pick up on the nature of scheduling; nevertheless,
this modeling is highly dependable on the reward function, and so it has a high bias introduced by
said function which is usually a difficult task to ascertain its validity and consistency, especially
in a multifaceted problem such as HPC job scheduling. In conclusion, this motivates this research
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to develop a solution using Supervised Learning, which may bring a more reliable and dynamic
behavior of the model, but also brings the aforementioned challenges.

In Chapter 4, a solution proposal is presented, along with a framework that will be used
to work through the challenges that arise from the chosen specific research context.
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4 GNN-BASED HPC JOB SCHEDULER

In this chapter, we detail the methodology for implementing multiple GNN-based models
trained using the KAIROS framework with the objective of producing job schedulers for HPC
systems. We introduce the proposal by detailing how the KAIROS framework operates, which
improvements were made to it for this research, how would a GNN model be used inside the
KAIROS framework and how the model will be trained and compared.

Additionally, this chapter presents how the objectives of this research are fulfilled. That
means that it mainly drives to investigate the efficiency of GNNs as models for HPC schedulers.
Also, it aims to compare the GNN variants in the job scheduling problem in HPC, also to
investigate the sensitivity of GNN-based models to change in scenario, to develop a scheduler
based on GNN and to evaluate this scheduler inside a strict protocol.

4.1 KAIROS FRAMEWORK: CONCEPTS AND IMPROVEMENTS

To achieve the objectives of the research and to develop the proposal model, the KAIROS
framework (PEREIRA; KOSLOVSKI, 2020) was chosen, both because it is based on Supervised
Learning and supports a range of different models, including GNNs and their variants. Another
main reason for the adoption of this framework is its natural usage of DAGs for the representation
of jobs and environmental entities. However, it is worthwhile to mention that KAIROS just offers
the baseline support for implementing the present work. After training and evaluating the model,
it can be attached and used by any resource management system or simulator.

KAIROS is a framework for the development of models based on Supervised Learning
for end-to-end job scheduling, inspired by the ML method called stacking (WOLPERT, 1992).
In the KAIROS framework, the model learns through Supervised Learning from data gathered
by the interaction of classical deterministic scheduling algorithms, called tutor algorithms in
the framework, with a simulated HPC environment. Knowledge from the weaker schedulers is
aggregated and extrapolated by the ML-based model, which may be able to surpass its tutors.

The framework was developed and improved by the authors in previous works (PEREIRA;
KOSLOVSKI, 2020; ALBUQUERQUE, 2022), and the improvements made in this work enhance
its capabilities. Essentially, the framework consists of three main components: tutor algorithms,
the simulated environment, and the ML-based model. The tutor algorithms are the classical
deterministic scheduling algorithms that interact with the simulated environment. The simulated
environment is a virtual environment that emulates a real-world HPC scheduling scenario. The
simulated environment generates data that is used to train the ML-based model. Finally, the
ML-based model is a supervised learning model that learns from the data generated by the
simulated environment.

One of the strengths of the KAIROS framework is its ability to generate reliable high
quality data in large quantities via interaction with tutor algorithms. The tutor algorithms are
considered the weaker schedulers, and the knowledge derived from their interaction with the
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environment is extrapolated by the ML-based model. The data generated by the simulated
environment can be used to train the ML-based model to predict the optimal schedule for a given
set of jobs.

4.1.1 Data Extraction and Model Training

The process of training an AI-based end-to-end scheduler using the KAIROS framework
can be divided into two major stages, the Data Extraction stage and the Model Training stage.
Both of these stages have sub-steps that need to be completed, which are explored in detail in
this section. The Data Extraction stage of the KAIROS framework is represented in Figure 7
where a four-step process is depicted. Step 1 presents one of the inputs of the system, which
consists of a collection of jobs structured as DAGs. Each DAG represents a job to be scheduled
within the system. Moving to Step 2, these jobs are decomposed into individual tasks using the
topological sort algorithm (PEARCE; KELLY, 2007), forming a queue of tasks. Step 3 illustrates
another input of the system, namely, a graph representing the computational infrastructure for
the simulation. Finally, in Step 4, a system called the Aggregator System executes each tutor
algorithm in an event-based simulation, meaning that each tutor can see a snapshot of the system
and the queue at each timestep to make its decisions, with these timesteps representing an
arbitrary amount of time, depending on the problem’s modeling. Each tutor aims to schedule the
task queue, defined in Step 2, in the infrastructure, defined in Step 3, with every decision being
monitored and logged. This process generates the output of the Data Extraction stage, which is
the raw data to be refined and used as training data in the subsequent stage.

The Model Training stage of the KAIROS framework is represented in Figure 8, which
depicts the stage as a five-step process. Step 1 represents one of the inputs to this stage, which is
the raw data collected during the previous Data Extraction stage. The raw data, now referred to
as the Tutors’ Knowledge, contains every interaction of each tutor with the system’s simulation.
Moving to Step 2, the Tutor’s Knowledge is filtered by selecting a set of metrics. These metrics
determine which knowledge should be preserved and which should be discarded based on the
following score function, derived from (YEN; ABBASLOO; CHAO, 2023): (T −α ·L)k/D̄.
Here, T represents the HPC system throughput in terms of task execution; L the loss rate that in
this work was measured in window steps that separate tasks from the same job; α a weighting
factor; k a scaling constant and D̄ is the average delay (bounded slowdown) of scheduled tasks
for each of the aggregated jobs. This score is applied for the scheduling of each tutor at each
timestep, this score determines the probability of each interaction to be chosen in relation to all
others, and an interaction is chosen stocastically based proportionally on these score functions,
with better interactions having a higher chance to be chosen at each timestep. This process aims
to leverage exploration over exploitation, avoiding issues that arise from greedly choosing only
the highest average of metrics at each timestep.

After the filtering process in Step 2, we move to Step 3, where the filtered data is
amalgamated into the training data. The training data is divided into two subsets: the training
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Figure 7 – KAIROS framework training data extraction architecture. Source: the author.

dataset and the validation dataset. The training dataset is used to train the model, while the
validation dataset is used to assess the model’s performance. This separation ensures that the
model is tested on data points it has never seen before, which helps evaluate its generalization
capabilities. Step 4 involves training and testing the model, which is another input into this stage.
Training and testing are performed using the datasets defined in Step 3. The inputs to the model
are the graphs representing the tasks in the queue, while the labels are the definitive scheduling
of each task. The model is trained using various algorithms and techniques to learn patterns,
usually depending on the model architecture. Finally, in Step 5, the output of the Model Training
stage is an end-to-end job scheduler trained with Supervised Learning in a dataset generated
through the interaction of classic scheduling algorithms with an event-based simulation.

4.1.2 Improvements

In this research, the KAIROS framework has been improved in several ways. First, two
sliding windows have been included in the framework: the hindsight window and the decision
window. The hindsight window is the number of timesteps in the future where the decomposed
tasks can be allocated, while the decision window is the number of decomposed tasks from the
queue that the model is able to see. The inclusion of these two windows improves the flexibility
of the KAIROS framework, making it better suited to a wider range of scheduling scenarios. In
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Figure 8 – KAIROS framework model training architecture. Source: the author.

addition to that, the framework had its graph integration capabilities enhanced, being able to
receive the job graphs, decompose them into tasks that hold references to the original job’s graph
representation, allowing models to access the full graph structure and still work with individual
tasks on each timestep.

These improvements were made to address the challenges associated with input and
output dimensionality when modeling solutions to the scheduling problem. The sliding windows
serve the purpose of placing upper limits on the dimensions of input and output for the neural
network model, ensuring its compatibility with open and closed system simulations. Moreover,
the increased graph integration allows for the easier inclusion of certain models, notably Graph
Neural Networks, facilitating more effective and comprehensive scheduling solutions.

Figure 9 illustrates the job decomposition process into a queue of tasks and the two
sliding windows (i.e., decision window and hindsight window). Step 1 illustrates a collection of
jobs, each of which has a finite number of tasks to be executed in an order constrained by the
dependencies. In Step 2 the jobs have been decomposed into a group of tasks, each task having
the specific details about its expect processing time, its resources demand and its dependencies
inside the original job. The Decision Window determines how many tasks the scheduler will be
able to see at any given time, and it slides forward as the scheduler further allocates the tasks.
Finally, in Step 3, the tasks are allocated to some specific node, in one of the spots inside the
Hindsight Window, which dictates how much in the future the scheduler can allocate a task,
meaning how much it can delay any given task.

Furthermore, the KAIROS framework has been enhanced to efficiently receive DAGs and

46



44

Figure 9 – KAIROS framework sliding windows. Source: the author.

decompose them into tasks organized in a queue. DAGs are commonly used to represent complex
workflows in job scheduling, and the ability to efficiently decompose them into tasks while
maintaining relationship information from the DAG is an useful improvement for the KAIROS
framework, since the original graph and its subgraphs can be recovered from the task at any
given point. The enhanced KAIROS framework can now handle DAGs with greater dynamism,
making it more suitable for complex scheduling scenarios that utilize GNN models as schedulers.

In general, the KAIROS framework is a tool for the development of ML-based Supervised
Learning models for job scheduling. Improvements made in this work enhance the capabilities of
the framework and make it more suitable for a wider range of scheduling scenarios. The ability
of the KAIROS framework to generate quality data in large quantities through the interaction of
tutor algorithms is a key strength that can lead to significant improvements in job scheduling
performance.

4.1.3 Tutors

In the KAIROS framework, the tutor algorithms are usually classical deterministic
scheduling algorithms that interact with the simulated environment to generate data that is used
to train the ML-based model. The tutors are weaker schedulers, and the ML-based model is
designed to learn from their behavior arriving at an aggregated decision process with better
scheduling performance. We have selected six classical deterministic scheduling algorithms as
tutors:

1. First-Come-First-Served (FCFS). The FCFS scheduling algorithm is a simple scheduling
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algorithm that schedules tasks based on their arrival time. In this algorithm, the task that
arrives first is scheduled first (BRUCKER, 1999).

2. Shortest Area First (SAF). The SAF algorithm schedules tasks based on the amount of
resources they occupy (BRUCKER, 1999), taking into account both the computational
requirements and the time it is expected to take for the task to be executed. It selects the
task that requires the smallest area, which is defined as the product of the computational
requirement and time required for execution (i.e., walltime).

3. F1, F2, F3, and F4. The four priority-based schedulers denoted by F1, F2, F3, and F4 are
based on different priority functions (CARASTAN-SANTOS; CAMARGO, 2017). Each
function assigns a different priority and they all take into consideration the processing
resource demand of each task and the time needed for the execution of each task. The
priority-based schedulers assign priorities to tasks based on these priority functions and
then schedule tasks in descending order of priority.

The Table 5 further defines the tutor algorithms, detailing their policies definitions and
the mathematical formula for finding the task to be scheduled in the nearest available processing
node. The mathematical formulas take into consideration pt , which is the total processing time
needed to complete task t; qt , which is the amount of computational resources required to process
task t and rt , which is the submission time of task t. For each policy decisions, the queue is
sorted by the formulas, from the lowest to the highest.

Algorithm Definition Formula
FCFS The task with the earliest submission time is selected. FCFS = rt

SAF The task with lowest total value of resource and time
to completion is selected.

SAF = pt ·qt

F1 Nonlinear function derived from statistical analysis. log10(pt) ·qt +8.70 ·102 · log10(rt)

F2 Nonlinear function derived from statistical analysis.
√

pt ·qt +2.56 ·104 · log10(rt)

F3 Nonlinear function derived from statistical analysis. pt ·qt +6.86 ·106 · log10(rt)

F4 Nonlinear function derived from statistical analysis. pt ·
√

qt +5.30 ·105 · log10(rt)

Table 5 – Tutor schedulers definitions. Source: the author.

These classical deterministic scheduling algorithms are not specifically designed to
handle tasks with dependencies. To address this limitation and ensure valid scheduling, an
algorithm will be introduced that modifies each classical algorithm by enforcing constraints. This
algorithm guarantees that each task is allocated no sooner than the latest end of the processing of
its dependencies, preventing invalid schedulings. By uniformly applying this dependency-aware
approach to all classical algorithms, task dependencies are effectively considered, leading to
correct and consistent scheduling results. This integrated solution combines the strengths of each
deterministic algorithm with dependency awareness, making them viable tutors for the model to
be trained.
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In addition to these classical deterministic algorithms, two heuristics were selected as
tutors, these being algorithms specifically tailored for scheduling DAGs with dependencies. The
chosen heuristics are:

1. Heterogenous Earliest Finish Time (HEFT) (GALLET; MARCHAL; VIVIEN, 2009).
The HEFT algorithm aims to minimize the total execution time of a set of tasks by
calculating the earliest finish time for each task on each available resource based on the
task’s computation and communication costs. The algorithm then assigns tasks to resources
that have the earliest finish time, taking into account the data dependencies between tasks.

2. Improved Predict Earliest Finish Time (IPEFT) (ZHOU et al., 2017). The IPEFT predicts
the earliest finish time of tasks by estimating the execution time of each task on each
available resource based on historical data. Then it can make more informed scheduling
decisions and allocate tasks to resources that are likely to provide the best performance.

Both of these heuristics can serve as viable tutors. HEFT’s focus on minimizing execution
time by considering computation and communication costs makes it suitable for generating
training data and establishing a baseline for scheduling performance. IPEFT, on the other
hand, enhances scheduling by predicting the earliest finish time of tasks using historical data.
Integrating both heuristics as tutors allows the generated data to be enriched with traces of more
complex dependency handling and predictive capabilities.

In summary, each of the tutor algorithms uses a different scheduling strategy to determine
the order in which tasks are scheduled. The data generated by the interaction of these tutor
algorithms was used to train the GNN-based models, to produce the end-to-end schedulers.

4.2 SCHEDULING GNNS

In the KAIROS framework, the scheduling using GNNs is achieved through the integra-
tion of these models into the ML-based model component. The ML-based model learns from
the data generated by the tutor algorithms that interact with the simulated environment, and is
responsible for making scheduling decisions based on the learned patterns and features.

As mentioned previously, the framework can now freely access graph information, even
when dealing with a subset of tasks from a job, allowing it to gather graph information and
transmit it to the model component. Having this in mind, for the GNN integration, the framework
is set up with a GNN variant (e.g., GCN, GAT, etc.) as the model to be trained, which will
then be provided with the relevant graph information by the framework, as it stores each of the
tutor algorithms interaction with the environment, including each task scheduling result and the
associated job graph, even if the tutor itself does not take that information into consideration,
which is usually the case with classical algorithms (BRUCKER, 1999).

As the framework controls the simulation, including the system resource status, queue
and sliding windows, a snapshot of the scheduling process can be constructed at each timestep.
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After the tutors finish interacting with the environment, the data is collected by the aggregator
module, which then trains the GNN model with the experiences of the tutors, choosing the best
scheduling tactic at each timestep based on the score function that takes into account the target
metrics previously set up in the framework. The model is then trained and it is ready to be
evaluated and reiterated if necessary.

4.3 SIMULATION AND MODEL TRAINING

A snapshot of the simulation process used in KAIROS is shown in Figure 10. The
simulation operates on a queue of tasks, where the number of visible tasks to any scheduler
is restricted by a sliding window known as the Decision Window. Within this window, a tutor
algorithm is employed to schedule the tasks and allocate them to specific nodes in the system.
The execution start time for each task is determined by another sliding window, known as the
Hindsight Window. The allocation process takes place on a virtual matrix representation, where
each row corresponds to a node in the system and each column represents a timestep within the
Hindsight Window; this is called the Allocation Matrix. The system assigns each task in the
virtual matrix by sampling a subset of the queue defined by the Decision Window. This approach
approximates real-world HPC scenarios, where tasks may experience varying levels of delay
and systems can range from offline to online. After all tasks from the Decision Window are
allocated, the system simulates the passage of time by sliding the Hindsight Window to the end
of the latest allocation, finishing a cycle of the simulation. A new cycle is then started by moving
the Decision Window to the end of the last task allocated, sampling a new subset of tasks to be
allocated in a now clean Allocation Matrix. The simulation cycle continues until all tasks in the
queue have been successfully allocated.

The design of the simulation system, as described above, is driven by the need to
accurately model real-world HPC environments while allowing flexibility and scalability. The
inclusion of the Decision Window addresses the requirement to simulate offline and online
systems. By limiting the number of visible tasks to the scheduler, the system mimics the dynamic
nature of HPC workloads. This enables the evaluation of scheduling algorithms under realistic
conditions, even when working with a predetermined set of jobs.

The presence of the Hindsight Window serves another crucial purpose in the simulation. It
allows for the simulation of an indeterminate number of timesteps, while preserving the necessary
dimensions for training an ML-based model. By organizing the allocation process in a virtual
matrix representation, the Hindsight Window provides a consistent framework for capturing
the temporal aspect of task scheduling. Adjusting the sizes of both the Decision Window and
the Hindsight Window allows for the representation of various HPC systems with different
characteristics, ensuring that the simulation can adapt to a wide range of scenarios. This flexible
approach facilitates the investigation of scheduling strategies and resource allocation techniques
in diverse HPC environments, enhancing the applicability and relevance of the simulation system.
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Figure 10 – KAIROS framework simulation environment snapshot. Source: the author.

Given these characteristics, some constraints must be followed to ensure successful
execution of the simulation process. Firstly, no task in the job collection can have a resource
demand greater than the available resources to any one node in the system since it would make
it impossible to fit the task in any one node and make it impossible to allocate in the proposed
simulation. Also, the duration of any task must not succeed the size of the Hindsight Window,
since the event-based nature of the simulation requires the total task to be allocated in the virtual
Allocation Matrix, as to provide a full context to the ML-based model that will be learning from
snapshots of the final allocations. The Decision Window has no upper limit, having only the
necessity of being larger than zero as a size constraint, since at least one task need to be allocated
per cycle for the simulation to eventually end.

One could argue that increasing the size of the Decision Window in the simulation system
leads to a closer approximation of an offline system. This is because a larger Decision Window
allows for more tasks to be allocated before any changes occur in the task queue. In the extreme
case where the Decision Window size equals the queue size, it represents a complete offline
likeness, as all tasks are known prior to allocation. On the other hand, the size of the Hindsight
Window determines how far ahead the scheduling algorithm can consider when making allocation
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decisions. A larger Hindsight Window provides more room for exploration of available resources,
but may also result in larger and more frequent gaps in the allocation process. The selection
of appropriate sizes for both windows involves striking a balance between replicating offline
characteristics and maintaining a realistic level of resource exploration and allocation efficiency
within the simulation system.

4.4 IMPLEMENTATION

The prototype was developed as an event-based simulator designed to mimic a HPC
environment. Jobs are submitted to a queue and await to execute atop a HPC Data Center (DC),
and tasks are characterized by their submission time, required walltime, demand for CPU
resources, and dependencies. The simulation progresses by either sliding the window forward
when all servers are unable to accept further tasks or when the job queue becomes empty,
signifying the completion of the current set of tasks. The prototype was implemented in Python
3.10, and leveraged key packages, mainly networkx for managing DAGs, pytorch and PyG as the
GNN backbone. We empirically set the constants of the score function α = 1.5 and k = 2. The
simulation and training of the models were executed on a computer with an Intel i5-9400F CPU,
64 GB of RAM and equipped with an NVIDIA RTX 3080 TI GPU with 12 GB memory.

Algorithm 1: KAIROS framework algorithm
Input: tutors, DC, whindsight , wdecision, job_queue, score_function, gnn_variant

1 model← GNN(gnn_variant);
2 aggregator← initialize_kairos(DC, whindsight , wdecision);
3 task_queue← topological_sort(job_queue);
4 for tutor in tutors do
5 while not task_queue.empty() do
6 tasks← task_queue.get(wdecision);
7 experience, metrics← tutor.schedule(tasks);
8 aggregator.evaluate(experience, metrics);
9 aggregator.save(metrics);

10 update_sliding_windows(whindsight , wdecision);
11 end
12 end
13 X_train, Y_train← aggregator.get_training_data(score_function);
14 model.fit(X_train, Y_train);
15 for job in job_queue do
16 tasks← topological_sort(job);
17 task_queue.add(tasks);
18 end
19 while not task_queue.empty() do
20 tasks← task_queue.get(wdecision);
21 experience, metrics← model.schedule(tasks);
22 aggregator.save(metrics);
23 update_sliding_windows(whindsight , wdecision);
24 end
25 model.save();

The Algorithm 1 summarizes the KAIROS framework execution. Initially, a set of
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parameters configure the simulation scenario, detailing the tutor algorithms, sliding windows,
job queue, and score function. Tasks are topologically sorted (PEARCE; KELLY, 2007) (line
3), and then scheduled by all tutors (lines 4−12). To select which tutor experience would be
used as training data for the model (line 13) we used the scoring function derived from (YEN;
ABBASLOO; CHAO, 2023). After scoring each tutor for their respective performance for each
job, the experiences are selected with the probabilities being directly proportional to their score.
This is done to prevent a dominant scheduler from overfitting the model, causing it to merely
mimic one of the tutors. Finally, after selecting the tutors’ experiences, the model is trained (lines
14) and is ready to be evaluated and reiterated if necessary (lines 15−24).

In this study, we investigated three variants of Graph Neural Network (GNN): GNN,
GCN, and GAT. For each variant, we repeated the training process, but the only change we
made was in the model architecture. This allowed us to compare the performance of the different
architectures when exposed to the same training data to ensure a fair comparison between each
other.

4.5 CONSIDERATIONS

In this chapter, we have presented a proposal for addressing the scheduling problem
in the context of HPC systems using the KAIROS framework. We have discussed how this
proposal tackles the challenges associated with HPC scheduling by employing ML-based models
introduced in the previous chapter.

To ensure the success and applicability of these models, several considerations needed
to be taken into account. Firstly, the quality and quantity of the training data is crucial. It is
important that the data accurately represents real-world scheduling scenarios and covers a wide
range of situations. The data should be diverse, encompassing different job characteristics and
scheduling scenarios. Generalization is also a key aspect to consider. The models should not only
perform well on the training data, but also demonstrate good performance on new, unseen data.
Since the model mimics the decision-making process of other algorithms, it is essential to have
representative data that includes diverse scenarios, allowing the training data to capture a variety
of policies being applied. Additionally, the choice of model architecture can have a significant
impact on performance.

In this study, we examined and contrasted variants of the GNN to evaluate their efficacy in
addressing the problem and their comparative performance. To achieve the goals of this research,
a systematic investigation of the performances of different structures was essential, which is
detailed in the subsequent chapter.
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5 EXPERIMENTAL RESULTS

This chapter is dedicated to presenting the empirical results derived from a comparative
analysis of scheduling algorithms. The algorithms developed using the KAIROS framework
were compared among themselves and against established tutor algorithms in various scenarios.
All ML-based models were trained on each dataset and novel validation data was generated or
spliced to ensure rigorous testing of the schedulers on data not yet seen by them.

The benchmark tests encompassed a comparison of the performance metrics of the
developed and tutor algorithms. After the test, a statistical analysis was performed to assess the
significance of the observed results.

5.1 METRICS

In this section, we introduce and discuss the four chosen metrics: bounded slowdown,
utilization percentage, makespan and window steps. Each metric serves a different purpose
in evaluating HPC schedulers, capturing different aspects of the system’s performance and
efficiency (FEITELSON; RUDOLPH, 1998a).

The bounded slowdown metric is specifically selected to represent the perspective of the
HPC system user. This metric is closely related to other metrics commonly used in online systems,
both open and closed (FEITELSON; RUDOLPH, 1998a). The slowdown metric measures a
normalized value that indicates the amount of delay each task experienced, with 1 being no
delay and higher values representing an increasing amount of delay. To avoid distortion of values
for tasks with a short execution time, a lower bound is introduced. This gives us the bounded
slowdown metric. It provides insights into how well the scheduler meets the time requirements
of user-submitted jobs.

The utilization percentage metric was chosen to represent the point of view of the HPC
system provider. It focuses on evaluating the efficient use of system resources. Utilization
percentage is the average percentage of the entire DC resources that are used over a period of
time, which in the context of this research is the size of an Hindsight Window.

The makespan metric is a fundamental measure of the efficiency of the scheduler.
Makespan represents the time taken to complete the process of a task or a set of tasks. It
is particularly suited for evaluating offline systems, where the scheduler has access to all the
information on the workload and can make optimal scheduling decisions. This metric provides
valuable insights into the scheduler’s ability to optimize task completion time.

Finally, the window steps metric is a custom metric designed for the context of this
research. It measures the amount of window steps needed to complete all tasks that compose a
job, and in this way we have a metric representing at job level what a user of the system would
experience as the response time to complete a submitted job.

By selecting and analyzing these four metrics, bounded slowdown, utilization percentage,
makespan and window steps, we aim to comprehensively evaluate the performance and efficiency
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of HPC schedulers, at either the data extraction for the training process or the evaluation of the
trained model. Each metric offers unique perspectives from both the user and system owner
viewpoints, enabling a holistic assessment of the scheduler’s capabilities. Calculation of these
metrics involves leveraging available data on job completion times, resource utilization, and
specified bounds, providing quantitative measurements for analysis.

Table 6 provides the mathematical expressions for the selected metrics. The formula for
bounded slowdown incorporates three variables: wt , representing the waiting time for a task;
pt , representing the processing time of the task; and τ , representing the lower bound for the
processing time of each task. The utilization percentage metric considers two values: Rcurrent ,
representing the currently available system resources, and Rtotal , representing the total amount
of system resources. The makespan metric solely relies on ct , which denotes the completion
time of each task (i.e., the exact time at which the task finishes its execution process). Lastly, the
window steps metric utilizes ct , representing the completion time of a task; Wα , representing the
size of the Hindsight Window; t, representing a task; and J, representing a job.

Metric Formula

Bounded Slowdown max( wt+pt
max(pt ,τ)

,1)

Utilization Percentage Rcurrent
Rtotal

Makespan max(ct)

Window Steps ⌈max(ct)−min(ct)
Wα

⌉,∀t ∈ J

Table 6 – Chosen metrics and their formulas. Source: the author.

5.2 WORKLOADS

The simulation system will have as input data from two distinct workloads. First, a
collection of semi-synthetic data derived from the distributions of common scientific workloads
will be utilized. These synthetic workloads are designed to capture the characteristics and
patterns observed in real scientific computations, ensuring a representative simulation of HPC
environments. Secondly, real data from a trace of the Alibaba datacenter will be incorporated
into the simulation. This real-world dataset provides insights into the operational dynamics of
a large-scale datacenter, offering a comprehensive view of workload variations and resource
demands in practice.

5.2.1 Scientific Workloads

The scientific workload data comes from a statistical analysis of common scientific
workflows executed in HPC environments (JUVE et al., 2013). The analysis was carried out on
six different workflows; all are executed in HPC centers for scientific purposes. The workflows
were characterized and then profiled, extracting the probabilistic distributions of their resource
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demands and execution times, logging the amount of jobs, CPU time, I/O read and write volumes,
memory utilization and CPU utilization percentage. This data was compiled, characterized and
profiled, resulting in the representative generational parameters to create new jobs that are similar
in their distribution of characteristics to the original workloads.

With this workload, it is possible to create large quantities of semi-synthetic data that
are still mathematically representative of real-world jobs, which is convenient for this research,
since it can provide any number of samples for the training data extraction process. However,
it is important to note that although an unlimited amount of data can be generated from these
probabilistic parameters, they will always have a bias of the data used to generate them, which
will be representative of the workflows, but that may be overfitted by the ML-based model, which
would make it very effective in the scenarios of that specific distribution, but will have failed in
the generalization of broader workflows. This problem is, however, unlikely to happen since the
tutors will be used as a teaching medium to the model and since the tutors do not appeal to any
statistical fitting, the model is very unlikely to be able to overfit its parameters to accommodate
these distributions.

5.2.2 Alibaba Trace Workloads

The Alibaba trace workloads consist of real data obtained from an 8-day trace of the
Alibaba datacenter collected in 2018, collecting information on 4.000 machines, 9.000 services
and a batch of 4.000.000 distinct jobs along with their allocation information over these 8 days
(GUO et al., 2019). This trace provides information on the actual workload patterns and resource
utilization observed in a large-scale production environment.

By incorporating this real-world dataset into the simulation, we can capture the intricacies
and complexities of HPC workloads in practice. Alibaba trace workloads offer an opportunity to
analyze the characteristics of tasks, their arrival rates, durations, and interdependencies, allowing
for a more accurate representation of workload dynamics.

5.3 SIMULATION SCENARIOS

Subsets of the available workloads will be selected and used as scenarios for training and
comparisons of the schedulers involved in the simulation. This approach enables a systematic
and fair evaluation of the scheduling algorithms involved, since there is a need to compare the
performance of the trained models, and the best comparison is with the tutor algorithms, since
it will indicate if the model was able to generalize the data and surpass its tutors. Each of the
scenarios are described below.

5.3.1 Scientific Workloads Scenario

There will be seven different scenarios for the Scientific Workloads data, each with
increasing levels of congestion in the DC. Specifically, the initial scenario will consist of 100
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jobs to be scheduled, and the subsequent scenarios will have 200 jobs, 300 jobs, 400 jobs, 500
jobs, 600 jobs, and 1000 jobs. These scenarios were created to examine how each scheduler
performs as the number of jobs competing for resources increases. This measures the adaptability
levels achieved by the tutor algorithms and, more significantly, by the trained proposed models.

5.3.2 Alibaba Trace Workloads Scenario

For the Alibaba trace workloads, a random 5-day cut will be selected from the 8 available
days, which represent a volume of data that is more than sufficient for model training and
validation. Although different 5-day cuts will be extracted from the data, the data fed to the tutor
algorithms will be the same at each instance of scheduling, since the fair comparison between
them is vital for the selection explained in the training data extraction process section.

5.4 METHODOLOGY OF RESULTS ANALYSIS

The core of our methodology involved initializing the KAIROS simulated environment,
which was configured with a predefined set of jobs and tasks for each scenario. The environment
was uniformly structured to operate on an infrastructure comprising 64 nodes, each provisioned
with normalized resources of value 1.0. This standardization was essential to ensure consistency
and comparability across different scenarios.

In the next phase, tasks were loaded into the environment and allocated by each scheduler
for execution. The primary objective here was to record how each scheduler behaved when faced
with data from distinct scenarios but consistent between each scheduler, thereby enabling an
accurate assessment of each scheduler’s comparative performance. This approach ensured that
the efficiency and effectiveness of each scheduling algorithm were evaluated under identical
conditions.

The queue of tasks was constructed by the decomposition of each job in order into
their tasks. This process was done individually for each job by constructing a graph with the
dependencies and then applying a topological sort to its tasks; each task is then decoupled from
the job maintaining information about its dependencies so the graph, or a subgraph of it, can be
reconstructed at any time. The final queue is then constructed by concatenating all tasks. For
each scheduling step, a subset of the queue is provided to the scheduler, the size of this subset is
based on the Decision Window size.

After the interaction of the schedulers, both ML-based and tutor algorithms, a dataset of
their behavior and performance was generated. This dataset encompassed task-level data, where
the makespan and bounded slowdown metrics were recorded for each task. At the job level, the
dataset included the number of window steps required to complete all tasks associated with each
job, shedding light on the overall job handling efficiency of each scheduler. Additionally, the
server-level data comprised the average utilization percentage for each server for every window
step, providing a detailed view of resource management and utilization.
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To maintain a consistent benchmarking framework, two parameters were set uniformly
for all scenarios. The size of the Hindsight Window was set to 400 timesteps, defining the range
of timesteps to allocate a batch of tasks until the window slid forward. The Decision Window,
limited to 100 tasks, provided information about up to that amount of future tasks when deciding
on a specific scheduling.

After completion of the data collection phase, a Cumulative Distribution Function (CDF)
was plotted for each metric in each scenario. The CDFs were instrumental in understanding and
comparing the distribution of data between different schedulers. Furthermore, to evaluate the
statistical significance of the differences observed between pair schedulers, pairwise ANOVA
tests were performed. The results of these tests were visually represented through a heatmap
matrix, plotting the P-value for each unique pair of different schedulers. This methodological
approach allowed for a clear representation of the performance variances among the different
scheduling algorithms and if they are statistically significant. This process was carried out
individually for each scenario.

5.5 RESULTS

The results of our comparative analysis are systematically organized to facilitate under-
standing and interpretation. For each scenario, we present the findings through a combination of
Cumulative Distribution Function (CDF) plots and pairwise P-value matrices. The CDF plots
offer a visual comparison of the performance of the scheduling algorithms in the selected metrics,
allowing the identification of trends and outliers. Meanwhile, pairwise P-value matrices provide
a statistical basis to assert the statistical significance of differences in performance between
algorithms.

Table 7 displays the preferred direction and reasoning for each metric’s values. A lower
preferred value suggests that a metric performs better when its CDF is skewed towards the left,
meaning that the majority of value occurrences are on the lower end of the spectrum. Conversely,
a higher preferred value indicates that a metric performs better when its CDF is skewed towards
the right, with the majority of value occurrences on the higher end of the spectrum.

The P-value is calculated to assess the statistical significance of differences in per-
formance between scheduling algorithms. This test compares the variances across groups to
determine whether the observed variations are larger than what might be expected due to random
chance alone. A significant P-value suggests that the algorithms exhibit distinct performance
characteristics under the conditions tested.

When interpreting the P-value matrices, each cell represents the outcome of the test
between a pair of different schedulers. A value below the significance threshold (here set at 0.05)
indicates a statistically significant difference in performance between the two algorithms. This
method allows us to confirm which differences observed in the CDF plots are indeed statistically
significant, thus reinforcing our conclusions with statistical rigor.
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Metric Preferred Direction Reasoning

Bounded Slowdown Lower Lower values indicate tasks experience minimal
delay, leading to a faster processing time and an
improved user experience.

Utilization Percentage Higher Higher values signify better resource utilization,
indicating that the computational resources in
the data center are being used effectively.

Makespan Lower Lower makespan values mean that the task is
completed faster, which is indicative of a more
efficient scheduling algorithm and a faster job
processing time.

Window Steps Lower Fewer window steps required to complete all
tasks signify a faster job turnaround time, en-
hancing the scheduling algorithm’s responsive-
ness and overall system throughput.

Table 7 – Metric preferences for values.

5.5.1 100 Jobs Scenario

For this scenario, 100 jobs were generated based on the Scientific Workloads data, each
job contained a number of tasks determined by a series of distributions based on the analysis of
multiple scientific research jobs; the characteristics of each task were also determined by the
same values originating from the analysis.

Figure 11a shows for the makespan that floor performance is relatively the same for many
of the schedulers, only FCFS has a clearly worse performance compared to the other schedulers,
which was expected due to its simplicity. The performances differ towards the ceiling of their
performances, around 85% or more, where the schedulers based on the GNN and its variants,
GAT and GCN, registered the best performances for this metric for most of the distribution,
followed closely by the IPEFT tutor algorithm.

Regarding utilization percentage, Figure 11a shows that the GNN-based schedulers
utilized the datacenter’s resources more efficiently staying between 64% and 100% by window
step. The same trend repeats, where the IPEFT follows close by and the other tutors are less
efficient with FCFS demonstrating the worst performance.

Figure 11a also shows that for window steps needed to complete the jobs, the GCN and
GAT schedulers had similar performances, being followed close by the GNN-based scheduler
and most of the tutors. The results begin to differ more towards the end of the distributions, above
90%, where the FCFS tutor shows to perform worse compared to the usual best performers.

Finally, Figure 11a also illustrates the comparative performance in the bounded slowdown
metric for each task. In particular, the best performing scheduler, the GCN, scheduled around
73% of tasks without any slowdown. The second best scheduler, the GAT, shows a better upper-
end performance by scheduling all tasks with a slowdown of 1.46 or less; however, it has worse
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performance at the lower and middle values. These two schedulers are followed by the GNN and
then by the tutor algorithms, with FCFS again being comparatively the worst of the algorithms.

For Figure 11b, it shows that for most metrics, there is a statistically significant difference
between the tutors and the GNN-based schedulers, with GAT and GCN having no statistically
relevant difference between them. A notable exception is the window steps metric, where the
only difference that can be considered statistically significant is for FCFS and the schedulers:
GAT, GCN, GNN and IPEFT. These results support the conclusions for the metrics, where we
can see a greater performance from the schedulers GAT, GCN and GNN, with the two former
being slightly more dominant.

5.5.2 1000 Jobs Scenario

Figure 12a presents the results for the 1000 jobs scenario, which represented a significant
increase in scale, introduced as a test for scheduling algorithms under high infrastructure conges-
tion. Consistent with the patterns identified in all other scenarios, the comparative performance
of the schedulers maintained a consistent trajectory, only this time further cementing the GAT
and GCN as dominant algorithms with similar performance. The CDF plots for this scenario
revealed a punished slowdown curve, with only 20% of the tasks having a bounded slowdown
of 1.72 or less for the best performing scheduler (i.e., GCN), indicating the severe congestion
introduced in the infrastructure. This was again reflected in the increase in the overall makespan
for tasks, a continuation of the trend seen in the previous scenarios.

In this scenario, the performance gap between less efficient and more efficient schedulers
reached its peak. As demonstrated in Figure 12b, there is a significant difference between the
metrics for every pair of schedulers for the makespan and bounded slowdown metrics. The
server utilization showed a difference between all pairs, except for the GNN-based schedulers
trained under the KAIROS framework, which achieved performances similar enough so that
their differences cannot be considered statistically relevant. Finally, the window steps metric
showed more disparities than ever, with most tutors having a statistically relevant difference
when compared to the trained models.

All other scenarios based on the Scientific Workloads data showed a similar trend as the
congestion in the system increased, their results discussion can be found at Appendix A.

5.5.3 Alibaba Trace Scenario

For this scenario, a slice of the Alibaba trace was randomly selected to serve as input
for the jobs to be scheduled in the same architecture, only normalizing the requested resources
to prevent an invalid scheduling or situations of deadlock where a task will never be able to be
allocated.

Figures 13a and 13b showcase the CDFs and heatmap matrices for all metrics that
originated from the execution of the schedulers on a slice of the Alibaba trace. As there is a
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considerable jump in the number of jobs and even task density and length, new behavior is
apparent when compared to the Scientific Workload scenarios. For the makespan and window
step metrics, a similar behavior is observed, just on a larger scale, as the worst scheduler
(i.e., FCFS) attains a task makespan in the worst-case scenario of 2.42× 107. Regarding the
utilization percentage metric, the comparative performance follows the same patterns, with the
GAT and GCN schedulers better utilizing the available resources; however, there is a shift when
analyzing the performances individually, as we see a larger gap between lower end performances
and a smaller gap between higher end performances, indicating that overall fragmentation in
the datacenter has increased. However, in the bounded slowdown metric, there is still a clear
performance gap between the three GNN-based schedulers (i.e., GNN, GCN and GAT) and its
counterparts.

The same statistical pattern seen in previous scenarios is repeated here, as demonstrated
in Figure 13b, the pair testing reveals that there are statistically significant differences between
the GNN-based schedulers and their tutors in almost all metrics, again pointing to a dominant
performance by the schedulers proposed in this work.

5.5.4 Statistical analysis

Comprehensive analysis across all scenarios, supported by pairwise P-value results,
confirms significant performance disparities between the scheduling algorithms. The GNN-based
algorithms, particularly GCN and GAT, demonstrated superior performance with statistically
significant differences compared to traditional and other ML-based schedulers. These findings
underscore the effectiveness of GNN-based models when compared to its tutors, which confirms
the GNN architecture as capable of generalizing the scheduling of HPC jobs process under the
KAIROS algorithm.

As the scale of the scenarios grew and the infrastructure became more congested, the
differences between schedulers became increasingly statistically significant. This was evident
from the P-value matrices, which showed that the scale of congestion accentuated the limitations
of simpler algorithms. The worse algorithms were observed to be more affected by congestion,
as their comparative performance continued to deteriorate.

Furthermore, for scenarios at the higher end of the congestion, even some GNN schedulers
started to be affected differently. Although their comparative performance remained similar,
the statistical significance of differences between their performances increased. This suggests
that as congestion increased, the impact on the performance of GNN schedulers became more
pronounced, although not as drastic as in the case of simpler algorithms.

5.5.5 Discussion

This section has provided a comprehensive evaluation of various scheduling algorithms
under different job load scenarios, revealing trends and performance differentiations. A critical
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observation across all scenarios is the escalation in makespan and bounded slowdown as job
density increases, which is to be expected. However, the relative performance of the scheduling
algorithms, particularly the GNN-based models (GCN, GAT, and GNN), remains remarkably
consistent as the job density increases. This points to a successful generalization by the ML-based
algorithms which based solely on the interaction of its tutor algorithms with an environment were
able to surpass these same algorithms, amalgamating their knowledge to reach further heights.

The GCN and GAT algorithms consistently demonstrate superior performance, dominat-
ing across most metrics. Their ability to efficiently handle increased job loads while maintaining
lower makespan and slowdown rates is of particularly interest. The GNN model also performs
commendably, trailing closely behind its counterparts. This consistent outperformance of the
GNN-based models highlights the efficacy of these variants of ML techniques to leaning complex
scheduling behaviors.

As the number of jobs escalates, thus increasing the congestion in the datacenter, the gap
between the lower-performing schedulers, such as FCFS, and their more advanced peers widens
significantly. This divergence underscores the limitations of simpler scheduling algorithms in
handling high-density job environments and highlights the potential of the GNN-based models
to be applied and thrive in complex scenarios.

Furthermore, statistical analysis reveals no substantial reason to prefer GAT over GCN in
these scenarios. Although their performance metrics are closely matched, GAT incurs a higher
computational cost in both training and task scheduling. Table 8 shows the average and standard
deviation values for the time taken and memory consumed by each model to schedule a batch
of tasks with the length of a Decision Window. The data for each model was taken from the
execution of the 1000 jobs scenario. This finding suggests that GCN may offer a more efficient
balance between performance and computational overhead, making it a preferable choice in
high-load scheduling contexts.

Model Time (s) Memory Usage (MiB)

GNN 67.9±1.2 4,375.8±230.8

GCN 103.1±2.8 4,687.5±509.6

GAT 283.6±6.2 8,125.0±767.1

Table 8 – Model average execution time and memory usage per batch of Decision Window.

Table 9 presents a summary of the leading performers for each metric in different scenar-
ios. The prevalence of the GNN variants is evident, as GAT and GCN consistently outperform
other schedulers in all metrics across all scenarios. It is worth mentioning that although the table
indicates the highest performer based on numerical comparison, statistical analysis suggests
that in most scenarios, the performance of all GNN-based schedulers is similar, with a notable
difference from their counterparts, particularly in high congestion scenarios.

In summary, the results of this comparative analysis underscore the significant advantages
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Scenario Makespan Utilization Percentage Window Steps Bounded Slowdown

100 Jobs GAT GAT GCN GAT

200 Jobs GCN GAT GCN GCN

300 Jobs GAT GAT GAT GAT

400 Jobs GAT GAT GCN GAT

500 Jobs GAT GAT GAT GCN

600 Jobs GAT GAT GCN GCN

1000 Jobs GAT GAT GCN GCN

Alibaba GAT GAT GCN GCN

Table 9 – Top performing schedulers for each metric and scenario.

of employing advanced GNN-based scheduling algorithms, particularly the variants GCN and
GAT, to manage complex high-volume job scenarios within datacenters.
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(a) Cumulative distribution functions of all metrics.

(b) Pairwise P-value matrices of all metrics.

Figure 11 – Results for the 100 jobs scenario.
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(a) Cumulative distribution functions of all metrics.

(b) Pairwise P-value matrices of all metrics.

Figure 12 – Results for the 1000 jobs scenario.
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(a) Cumulative distribution functions of all metrics.

(b) Pairwise P-value matrices of all metrics.

Figure 13 – Results for the Alibaba trace scenario.
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5.6 CONCLUSION

The results presented in this chapter have culminated in key findings regarding the
performance of various scheduling algorithms under different job load scenarios. The study
distinctly illustrates the effectiveness of GNN-based scheduling algorithms, particularly GCN
and GAT, trained under the KAIROS framework in adapting to differently congested environ-
ments. These algorithms have consistently outperformed traditional scheduling methods by
demonstrating lower makespan and bounded slowdown metrics while maintaining and efficient
usage of resources, which can be beneficial to both users and administrators of datacenters.

One conclusion of note was the comparison between the performances of the GNN-
based model variants, which are the GNN, GAT and GCN, concluding that both GAT and GCN
have statiscally better performance than GNN, however with no significant statistical difference
between the performances of GAT and GCN. Given the higher computational demands of GAT,
the GCN algorithm emerges as a more resource-efficient option, balancing high performance
with lower computational overhead.

This work advances our understanding of GNN-based scheduling algorithms trained
under Supervised Learning on the experience of weaker algorithms. Also, it presents a novel
comparison between three GNN variants and their relative performance when applied to the job
scheduling problem under the HPC context.
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6 CONCLUSIONS

This final chapter aims to encapsulate the essence of this dissertation by revisiting the
primary objectives, discussing key findings, and reflecting on their implications. The structure of
this chapter is laid out to first summarize the research questions and the answers derived, delve
into the contributions made to the field of GNN-based scheduling in the context of HPC, identify
the limitations of this study, propose directions for future research, and finally, conclude with a
comprehensive summary of the entire work. This systematic approach ensures a coherent and
thorough reflection on the study’s outcomes and their broader impact.

6.1 KEY FINDINGS AND RESEARCH QUESTIONS

The investigation embarked upon in this dissertation was driven by a set of research
questions, focusing on the efficiency and potential of GNN variants in the realm of HPC schedul-
ing. The study compared various GNN models, revealing insights into their performance and
applicability. Our motivation stemmed from the need to explore novel approaches that could
potentially improve upon existing models and techniques.

6.1.1 GNN Variants in HPC Scheduling

Our comparative analysis of different GNN variants, including GCN and GAT, demon-
strated their varying efficiencies in job scheduling within the HPC context. The study found
that specific GNN models, notably GCN, exhibited superior performance in managing complex
scheduling tasks, thereby addressing our first specific objective.

The performance analysis revealed that for this specific context there’s no statistically
significant gain that justifies the usage of a GAT model, since it requires more computational
power to train and execute due to the usage of its attention mechanisms. Therefore, as far as this
work has explored the models, the GCN has proved itself to be more efficient when applied to
the scheduling problem in the HPC context.

6.1.2 Behavior of GNN Models

The second specific objective involved investigating the adaptability of these models
to changes in target metrics. The research revealed that GNN models respond dynamically
to varying metrics, highlighting their potential for flexible application in diverse scheduling
scenarios.

6.1.3 Prototype Development and Evaluation

In response to the third and fourth objectives, the development and subsequent evaluation
of a prototype GNN-based scheduler not only demonstrated the viability of these models but
also provided a concrete basis for their assessment against conventional scheduling algorithms.
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With this objective in mind, we enhanced the KAIROS framework specifically for this
research by introducing sliding windows that can adapt to different scenarios and effectively
leverage the power of GNNs. In addition, the introduction of sliding windows in the KAIROS
framework allowed us to capture dynamic temporal dependencies and effectively model the
complex relationships inherent in job scheduling through the use of graph structures while being
compatible with Neural Networks constraints.

6.1.4 Performance Improvement Based on Metrics

Finally, the study’s evaluation of the scheduler’s performance against a set of metrics,
as per the fifth objective, confirmed the hypothesis that GNN-based schedulers could indeed
enhance performance, particularly in high-congestion scenarios. More specifically, by learning
only from the interaction of simpler algorithms all GNN variants showed the potential to surpass
their tutors by generalizing and amalgamating their scheduling behavior.

6.2 CONTRIBUTION TO THE FIELD

The contributions of this dissertation to the field of HPC scheduling are multi-faceted. By
comparing advanced geometric machine learning techniques, specifically GNN-based algorithms,
into the scheduling process, the study has introduced new key conclusions to the field of GNN-
based job scheduling in HPC environments, which is an intersection of fields that still lacks
research when compare to other intersections of scheduling and ML techniques.

Furthermore, this work contributes with the preexisting KAIROS framework, by extend-
ing its concepts and functionalities, specially with the introduction of sliding windows, graph
and subgraph decomposition support and exploration over exploitation approach to experience
selection.

The application of Supervised Learning using the experience of weaker algorithms to
train more advanced GNN models represents an underexplored approach in this domain. This
strategy has proved itself viable in generating effective ML-based schedulers.

Furthermore, the comprehensive comparison of different GNN variants offers a valuable
reference for future developments in the field. By elucidating the relative strengths and weak-
nesses of each model, this research aids in making informed decisions about the selection of
appropriate algorithms for specific HPC scheduling needs.

6.3 STUDY LIMITATIONS

While this study has achieved its objectives, it is essential to acknowledge its limitations.
These limitations primarily stem from the experimental setup and the scope of the study.

The reliance on the KAIROS framework, though beneficial for a controlled analysis,
might not entirely replicate the complexity and unpredictability of real-world HPC environments.
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This dependency could affect the generalizability and applicability of the findings to other HPC
contexts.

Additionally, the exploration of how different parameters, such as window sizes and
tutor algorithms, influence the learning and ultimate performance of the GNN-based schedulers
was limited. A more exhaustive investigation into these aspects could provide a more nuanced
understanding of the schedulers’ adaptability and efficiency.

6.4 RECOMMENDATIONS FOR FUTURE RESEARCH

Some recommendations for future research are proposed. These suggestions aim to
extend the understanding and applicability of GNN-based scheduling in HPC environments.

Future studies should consider examining a broader spectrum of GNN models. This
exploration could uncover new insights into the capabilities and limitations of various GNN
approaches in different scheduling scenarios.

Additionally, incorporating a variety of tutor algorithms and learning methodologies
could offer a more comprehensive perspective on the training and performance of GNN-based
schedulers. This would also help in understanding the impact of different training paradigms on
the efficacy of these models.

Finally, applying the findings of this research to actual HPC environments would enhance
their practical value. Conducting field tests and experiments in real-world settings could validate
and refine the proposed models, making them more robust and applicable.

6.5 CLOSING SUMMARY

This study aimed to investigate the applicability of GNNs as job scheduler algorithms in
the HPC environment. For this we expanded the preexisting KAIROS framework to explore a
Supervised Learning approach for this problem. Throughout our study, we proposed a methodol-
ogy for experiments to evaluate the performance of GNN-based job scheduling models against
classical scheduling algorithms from the literature. We defined specific metrics and scenarios to
assess the effectiveness of the models accurately.

After acquiring relevant data and training the GNN-based models, we conducted a series
of statistical analysis to draw conclusions from the comparison of all trained models among
themselves and against their tutors. This analysis indicated a superior performance from the
GNN-based solutions, specially the models using GAT andd GCN techniques.

In conclusion, this work is a step forward in the application of GNN-based algorithms
for HPC scheduling. These findings show the potential of these advanced models in enhancing
scheduler performance. As HPC systems continue to evolve and grow in complexity, the insights
and methodologies developed in this may contribute to the design of more efficient, adaptable,
and intelligent scheduling solutions.
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APPENDIX A – ADDITIONAL SCIENTIFIC WORKLOAD RESULTS

A.1 200 JOBS SCENARIO

In this scenario, a consistent pattern in the relative performance of the scheduling algo-
rithms started to emerge, mirroring the trends identified in the 100 job scenario. However, a shift
occurred in some performance metrics due to the increased number of jobs; this increase was
global since the number of jobs increased while the infrastructure remained the same, so the
relative performance between schedulers barely changed. The CDF plots presented in Figure
14a demonstrated a steeper slowdown curve, indicative of an increase in infrastructural stress
under higher work load. This trend translated into longer waiting times for tasks, consequently
leading to an elevated overall makespan.

An increase in average server utilization was also evident, a reflection of the system’s
response to the heightened job density. Alongside this, there was a rise in the number of window
steps required for job completion, also attributed to the fact that it now takes longer to complete
tasks due to the increased density. Interestingly, although the relative performance ranking did
not change, this complexity did not affect all schedulers equally; less efficient algorithms were
disproportionately impacted. As a result, the performance gap between the less efficient and
more efficient schedulers became more pronounced. The implications of these trends are visually
represented in Figures 14a and 14b.
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(a) Cumulative distribution functions of all metrics.

(b) Pairwise P-value matrices of all metrics.

Figure 14 – Results for the 200 jobs scenario.
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A.2 300 JOBS SCENARIO

The evaluation of this scenario further reinforced the trends observed in the preceding
scenarios, particularly highlighting the system’s response to an increasing job density. The relative
performance of the scheduling algorithms remained consistent with previous observations, but
the impact of the higher job volume was more pronounced. The CDF plots illustrated in Figure
15a exhibited a slowdown curve tending even more to higher values, signaling an intensification
of congestion within the infrastructure. This increased congestion was directly mirrored in the
extended makespan values for tasks across the board, although the distributions for the makespan
are very similar, the values are increased overall.

Analyzing the average server utilization indicated a continued rise, a trend in line with
the additional demands imposed by the increased number of jobs. The scenario also saw a
further increase in the number of window steps necessary for effective task management, which
was to be expected. Notably, the performance gap between the less efficient and more efficient
schedulers became increasingly evident, as pointed by the increased values of difference on the
pairwise P-values indicated by Figure 15b, highlighting the challenges in high-load scenarios
that simpler algorithms usually struggle with.
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(a) Cumulative distribution functions of all metrics.

(b) Pairwise P-value matrices of all metrics.

Figure 15 – Results for the 300 jobs scenario.
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A.3 400 JOBS SCENARIO

The analysis of this further confirmed the behaviors of the schedulers performances
under increasing job loads. As observed in the 100, 200 and 300 jobs scenarios, the comparative
performance of the schedulers and the change in the metrics retained a similar trend. In this
scenario, the CDF plots displayed in Figure 16a revealed values for slowdown curve even more
concentrate in larger values, meaning that a greater percentage of tasks had a larger waiting time,
an indication of heightened infrastructural congestion. This pronounced congestion contributed
to a further increase in the overall makespan for tasks, marking a consistent trend across all
scenarios.

In terms of resource utilization, the average server utilization was similar to other sce-
narios, with a slight increase, indicating that this scenario reached the ceiling of resource
optimization for the schedulers, as the average for each window is indicative of efficient resource
utilization. This was complemented by an increase in the number of window steps required
for task completion, since the infrastructure remains the same, there’s a need to further and
further window steps to complete the increasing number of tasks. The distinction between the
performance of less efficient and more efficient schedulers was even more pronounced in this
scenario, as shown in Figure 16b with the rising values of statistically relevant differences
between the worst performing schedulers when paired with better ones.
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(a) Cumulative distribution functions of all metrics.

(b) Pairwise P-value matrices of all metrics.

Figure 16 – Results for the 400 jobs scenario.
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A.4 500 JOBS SCENARIO

Consistent with the patterns observed in the previous scenarios, the relative performance
of the schedulers and the rising values for waiting times for a larger portion of tasks showed a
familiar trend. Figure 17a shows the plots for this scenario which demonstrated an even larger
concentration of increased values for the slowdown curve, indicating a further escalation in
infrastructural congestion. This intensification directly translated into a substantial increase in
the overall makespan for tasks, a trend that has been consistent across all evaluated scenarios.

Resource management within this scenario also mirrored the trends observed in previous
scenarios, with the average server utilization constrained by the limits of each scheduler once
again. Furthermore, the number of window steps required for managing the tasks also experienced
a notable increase, highlighting the escalating factors as the volume of jobs increases.

The gap in performance between the less efficient and the more efficient schedulers
became more distinct in this scenario, clearly visible in Figures 17a and 17b showing larger gaps
in the distributions and even more significant P-values between pairs of schedulers in all metrics.
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(a) Cumulative distribution functions of all metrics.

(b) Pairwise P-value matrices of all metrics.

Figure 17 – Results for the 500 jobs scenario.
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A.5 600 JOBS SCENARIO

In the context of the 600 jobs scenario, the trends and implications of scheduler perfor-
mance in high-volume job environments were further accentuated. Aligning with observations
from previous scenarios, Figure 18a demonstrates that the relative performance of the schedulers
continued to exhibit a consistent pattern. A rise in values for makespan and the higher concentra-
tion of larger bounded slowdown values also followed the trend set by previous scenarios. This
points to a conclusion that higher densities will only exacerbate the values but keep the trends
consistent.

The scenario also kept the trends for window steps and server utilization, with more and
more window steps needed to complete the scheduling. The impact of increasing or reducing the
size of the window for these scenarios is left for future research.

Figure 18b highlights the performance disparity between the less efficient and more
efficient schedulers in this scenario, with higher statistical differences being indicated between
more and more pairs of schedulers, specially in the bounded slowdown metric, which points to a
more accurate conclusion about the performance of the trained schedulers.
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(a) Cumulative distribution functions of all metrics.

(b) Pairwise P-value matrices of all metrics.

Figure 18 – Results for the 600 jobs scenario.
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