
SANTA CATARINA STATE UNIVERSITY - UDESC
COLLEGE OF TECHNOLOGICAL SCIENCE - CCT

GRADUATE PROGRAM IN APPLIED COMPUTING - PPGCAP

GABRIEL PIMENTA ROBAINA

PERFORMANCE AND PREDICTABILITY ANALYSIS OF LOCAL
FILE SYSTEM I/O WORKLOADS ON SERVERLESS CLOUD

PLATFORMS

JOINVILLE

2024

2

GABRIEL PIMENTA ROBAINA

PERFORMANCE AND PREDICTABILITY ANALYSIS OF LOCAL
FILE SYSTEM I/O WORKLOADS ON SERVERLESS CLOUD

PLATFORMS

Master thesis presented to the Graduate
Program in Applied Computing of the
College of Technological Science from
the Santa Catarina State University, as a
partial requisite for receiving the Master’s
degree in Applied Computing

Supervisor: PhD Adriano Fiorese

JOINVILLE

2024

3

4

Gabriel Pimenta Robaina

Performance and predictability analysis of local file system I/O workloads on
serverless cloud platforms

Esta dissertação foi julgada adequada para a obtenção do título de Mestre em Com-
putação Aplicada área de de concentração em "Sistemas de Computação", e apro-
vada em sua forma final pelo Curso de Mestrado em Computação Aplicada do Centro
de Ciências Tecnológicas da Universidade ddo Estado de Santa Catarina.

Banca Examinadora:

Adriano Fiorese
(DCC/UDESC)

Orientador

Luiz Fernando Bittencourt
(IC/UNICAMP)

Convidado

Rafael Rodrigues Obelheiro
(DCC/UDESC)

Convidado

Joinville, 01 de Julho de 2024

5

ACKNOWLEDGMENTS

I would like to thank my parents for all the support and opportunities that led
me to being here. You made it all possible from the start. I am only here because of you.
My love and gratitude to Bruna for being here ever since I started my transition from
mechanical engineering to IT. You always believed in me and my potential to achieve
my goals. You also brought Maggie into my life. Thank you for caring for and supporting
me through the extensive hours of studying and working at home.

Finally, my sincere gratitude to all my teachers, especially my supervisor Adri-
ano. You believed in me from the beginning of my work on GOTE, and most importantly
during my transition to serverless performance analysis. You encouraged me when I
questioned whether I should quit the master’s program. Thank you.

6

“Every time the weight of who I wish I
already was comes crashing down on who
I still am. I try to be ready and excited
to receive it, and even if all is said and
done, I’m still meant to be an Honorary
Astronaut.”

Honorary Astronaut

7

RESUMO

Serverless é um paradigma emergente para computação em nuvem que habilita o
desenvolvimento de aplicações em nuvem com uma abstração do provisionamento e
gerenciamento da infraestrutura computacional. AWS Lambda e Google Cloud Functi-
ons (GCF) são exemplos de grandes plataformas de nuvem que já oferecem produtos
para serverless. Usuários de plataformas serverless são cobrados apenas pelos re-
cursos de nuvem consumidos e tempo de execução de suas aplicações, chamadas
nesse paradigma de funções, em um modelo pay-per-use. Embora a abstração de
infraestrutura facilite e acelere o desenvolvimento de aplicações nas plataformas ser-
verless, ela limita o controle e visibilidade de aspectos que são determinantes para o
desempenho das aplicações. Esse cenário prejudica a previsibilidade de desempenho
e custo das aplicações serverless uma vez que desempenho e tempo de execução
tem impacto direto em custo. A falta de previsibilidade de custo é um fator de risco
relevante principalmente na avaliação do potencial de retorno financeiro relacionado
a migração de aplicações legadas em ambientes on-premises para plataformas ser-
verless na nuvem. Atualmente as plataformas serverless dispõem de um sistema de
arquivos efêmero que pode ser acessado pelas funções, habilitando assim a migração
de uma classe de aplicações que interagem com o sistema de arquivos em operações
de entrada e saída (I/O). Esse trabalho busca aumentar a visibilidade de aspectos
caixa-preta das plataformas serverless e ajudar desenvolvedores a tomar decisões
informadas sobre a migração de aplicações de I/O de arquivos para AWS Lambda e
GCF. Para isso, este trabalho apresenta um agregado de fatores que impactam de-
sempenho e previsibilidade em plataformas serverless, e uma análise comparativa de
desempenho e previsibilidade entre AWS Lambda e GCF de segunda geração para
cargas de trabalho de I/O no sistema de arquivos local das funções. Resultados mos-
traram que AWS Lambda tem desempenho igual ao GCF para escrita de arquivos
pequenos (10 KB) e superior na escrita de arquivos grandes (1 GB). Esses resultados
contradizem as expectativas de que o desempenho do GCF seria superior devido ao
seu sistema de arquivos ser mantido em memória. Por outro lado, GCF teve desem-
penho superior para todas as operações de leitura com I/O direto. AWS Lambda foi
mais previsível para leituras e escritas em arquivos pequenos com mínima alocação
de recursos de memória e CPU. Ainda, GCF foi mais previsível para leituras com I/O
direto em arquivos grandes. Por fim, esses resultados permitiram a construção de um
conjunto de recomendações para desenvolvedores que usam ou buscam usar AWS
Lambda e GCF para cargas de trabalho de I/O para o sistema de arquivos local.

Palavras-chaves: Serverless, Lambda, AWS, GCF, Google Cloud, I/O, IO, Perfor-
mance, Desempenho, Análise de desempenho, Previsibilidade, Variabilidade.

8

ABSTRACT

Serverless is an emerging paradigm for cloud computing that enables the develop-
ment of cloud-based applications while abstracting the provisioning and management
of computational infrastructure. AWS Lambda and Google Cloud Functions (GCF) are
examples of major cloud platforms that already offer serverless products. Users of
serverless platforms are only charged for the cloud resources consumed and compute
time in a pay-per-use model. In this paradigm applications are also known as functions.
Although the infrastructure abstraction facilitates and accelerates application develop-
ment on serverless platforms, it limits control and visibility of aspects that are crucial
for application performance. This scenario hinders the predictability of performance
and cost of serverless applications since performance and runtime have a direct im-
pact on cost. The lack of cost predictability is a significant risk factor, especially when
evaluating the potential financial return related to migrating legacy applications from
on-premises environments to serverless platforms in the cloud. Currently, serverless
platforms offer an ephemeral file system that can be accessed by functions, enabling
the migration of a class of applications that interact with the file system in input and out-
put (I/O) operations. This work seeks to increase the visibility of black-box aspects of
serverless platforms and help developers make informed decisions about migrating file
I/O applications to AWS Lambda and GCF. To this end, this work presents an aggrega-
tion of factors that impact performance and predictability on serverless platforms, and
a comparative analysis of performance and predictability between second-generation
AWS Lambda and GCF for file I/O workloads on the functions’ local file system. Re-
sults showed that AWS Lambda and GCF have equivalent performance when writing
small files (10 KB). However, AWS Lambda performs better when writing large files (1
GB), contrary to the expectation that GCF would have superior performance due to it’s
in memory file system. Conversely, GCF presented superior performance for all read
operations with direct I/O. AWS Lambda was more predictable for reading and writing
small files with minimal memory and CPU resources allocated. Additionally, GCF was
more predictable for direct I/O reads in large files. Finally, these results allowed for the
construction of a set of recommendations to developers using or seeking to use AWS
Lambda and GCF for file I/O workloads to the local file system.

Key-words: Serverless, Lambda, AWS, GCF, Google Cloud, I/O, IO, Performance, Per-
formance analysis, Predictability, Variability.

9

LIST OF FIGURES

Figure 1 – AWS Lambda execution environment lifecycle 21
Figure 2 – Confidence intervals for the mean differences in Tukey test 31
Figure 3 – Histograms for collected data on AWS Lambda and Google Cloud

Functions (GCF) in the preliminary experiment 54
Figure 4 – Confidence intervals for the mean latencies in AWS Lambda and

GCF for day of week and time of day factors in the preliminary expe-
riment . 55

Figure 5 – ECDF of write latency for an 1 GB file in AWS Lambda and GCF
using 512 B and 128 KB Input/Output (I/O) sizes 59

Figure 6 – Confidence intervals of write latency for an 1 GB file in AWS Lambda
and GCF using 512 B and 128 B I/O sizes 60

Figure 7 – Coefficient of Variations (CVs) for write operations on large files . . . 60
Figure 8 – ECDF of write latency for a 10 KB file with 512 B I/O size in AWS

Lambda and GCF using minimum and maximum resource tiers . . . 62
Figure 9 – Confidence intervals of write latency for a 10 KB file with 512 B I/O

size in AWS Lambda and GCF using minimum and maximum re-
source tiers . 63

Figure 10 – CVs for write operations on small files 63
Figure 11 – ECDF of read latency for an 1 GB file in AWS Lambda and GCF

using 512 B and 128 B I/O sizes . 65
Figure 12 – Confidence intervals of read latency for an 1 GB file in AWS Lambda

and GCF using 512 B and 128 KB I/O sizes 66
Figure 13 – CVs for read operations on large files 66
Figure 14 – ECDF of read latency for a 10 KB file with 512 B I/O size in AWS

Lambda and GCF using minimum and maximum resource tiers . . . 68
Figure 15 – Confidence intervals of read latency for a 10 KB file with 512 B I/O

size in AWS Lambda and GCF using minimum and maximum re-
source tiers . 69

Figure 16 – CVs for read operations on small files 69
Figure 17 – Histograms of write latency for an 1 GB file in AWS Lambda and GCF

using 512 B and 128 KB I/O sizes 84
Figure 18 – Histograms of write latency for a 10 KB file in AWS Lambda and GCF

using minimum and maximum resource tiers 85
Figure 19 – Histograms of read latency for an 1 GB file in AWS Lambda and GCF

using 512 B and 128 KB I/O sizes 86

10

Figure 20 – Histograms of read latency for a 10 KB file in AWS Lambda and GCF
using minimum and maximum resource tiers 87

11

LIST OF TABLES

Table 1 – Comparison of features between AWS Lambda and GCF 23
Table 2 – Sample data for ANOVA example . 30
Table 3 – Resulting ANOVA table for the example 30
Table 4 – Comparison of related work . 44
Table 5 – Resource allocation compatibility tiers 49
Table 6 – Factors, levels and considerations for the 𝑛2𝑚 experiment 50
Table 7 – Factors and levels for the preliminary experiment 54
Table 8 – Resulting ANOVA in AWS Lambda for the preliminary experiment . . 56
Table 9 – Resulting ANOVA in GCF for the preliminary experiment 56
Table 10 – Level medians for time of day and day of week factors in the prelimi-

nary experiment . 56
Table 11 – Factor significance and difference between level medians for each

cloud provider in the preliminary experiment 56
Table 12 – Factors and levels for write operations on large files 58
Table 13 – Resulting ANOVA for write operations on large files 59
Table 14 – Factors and levels for write operations on small files 61
Table 15 – Resulting ANOVA for write operations on small files 62
Table 16 – Factors and levels for read operations on large files 64
Table 17 – Resulting ANOVA for read operations on large files 65
Table 18 – Factors and levels for read operations on small files 67
Table 19 – Resulting ANOVA for read operations on small files 68
Table 20 – Summary of performance and predictability results 72

12

LIST OF ACRONYMS AND ABBREVIATIONS

ANOVA Analysis of Variance

API Application Programming Interface

AWS Amazon Web Services

CR Compatibility Rule

CV Coefficient of Variation

dd Device-to-Device copy

ECDF Empirical Cumulative Distribution Function

EFS Elastic File System

FIO Flexible I/O Tester

GCF Google Cloud Functions

GCP Google Cloud Platform

GCR Google Cloud Run

GCS Google Cloud Storage

HTTP Hypertext Transfer Protocol

INIT Initialization phase

INVOKE Invocation phase

I/O Input/Output

IOPS Input/Output Operations Per Second

LB Lower is Better

MAF Microsoft Azure Functions

RA Research Answers

RQ Research Questions

S3 Simple Storage Service

SSD Solid State Drive

VM Virtual Machine

WSS Working Set Size

13

CONTENTS

1 INTRODUCTION . 14
1.1 Objectives . 17
1.1.1 General . 17
1.1.2 Specific . 17
1.1.3 Contributions . 18
1.2 Work structure . 18

2 BACKGROUND . 19
2.1 Serverless applications . 19
2.1.1 Features from AWS Lambda and GCF 21
2.2 Performance analysis . 24
2.3 Analysis of Variance (ANOVA) . 26
2.3.1 ANOVA and one-factor experiments 26
2.3.2 ANOVA applied to two-factor and m-factor experiments 28
2.3.3 ANOVA example applied to a performance experiment 29
2.4 File system I/O performance . 32

3 RELATED WORK . 34
3.1 Factors affecting serverless I/O performance 34
3.2 Serverless shared file system I/O performance 36
3.3 Serverless local file system I/O performance 37
3.4 Serverless performance predictability 40
3.5 Considerations about the related work 40

4 METHODOLOGY . 46

5 EXPERIMENTS . 53
5.1 Preliminary experiment: Time of day and day of week factors 53
5.2 Main experiment . 57
5.2.1 Write operations on large files . 58
5.2.2 Write operations on small files . 61
5.2.3 Read operations on large files . 64
5.2.4 Read operations on small files . 67

6 DISCUSSION . 70

14

7 CONCLUSION . 75

BIBLIOGRAPHY . 79

APPENDIX A – HISTOGRAMS OF WRITE LATENCY ON LARGE
FILES (1 GB) . 84

APPENDIX B – HISTOGRAMS OF WRITE LATENCY ON SMALL
FILES (10 KB) . 85

APPENDIX C – HISTOGRAMS OF READ LATENCY ON LARGE
FILES (1 GB) . 86

APPENDIX D – HISTOGRAMS OF READ LATENCY ON SMALL
FILES (10 KB) . 87

15

14

1 INTRODUCTION

Serverless is a cloud computing paradigm that enables the development of
cloud native applications while abstracting the underlying infrastructure management
with a pay-per-use billing model. Developers can focus on writing business rules inside
serverless functions while relying on serverless platforms for providing and maintaining
highly available and auto scalable infrastructure components. Serverless functions can
be triggered from Hypertext Transfer Protocol (HTTP) requests, messaging queues
and business events among others. Amazon Web Services (AWS) Lambda, GCF are
two of the most relevant serverless offerings from major cloud platforms in the market
(AWS, 2023l; GCP, 2023i; CNCF, 2023).

This paradigm has been adopted by a wide range of applications that include
machine learning, big data analytics and Internet of Things (WEN et al., 2023). Ser-
verless has also been gaining increasing attention among software engineers and the
industry(WEN et al., 2021). Companies such as Netflix, Codepen, and Coca-Cola have
adopted serverless-based architecture stacks, leveraging serverless platforms to de-
ploy parts of their applications (SOMU et al., 2020). According to a market report from
2023, while the global market for serverless was estimated at $9.8 Billion in 2022, it is
expected to grow into $43.7 Billion by 2030 (RESEARCH; MARKETS, 2023). The ser-
verless topic has received increasing attention in academic research, with a significant
rise in the number of papers published in top-tier conferences, growing from 1 in 2017
to 22 in 2022 (WEN et al., 2023).

Although serverless applications are advantageous due to its unique charac-
teristics, they are fundamentally different from typical legacy applications. Migrating
an existing application to serverless involves decomposing the software into granular
services, and refactoring existing code to adhere to the platform’s API (RISTOV et al.,
2020; SPILLNER; DORODKO, 2017). In addition, the black-box nature of serverless
platforms lead to the lack of knowledge and control over the serverless environments,
consequently adding complexity to deploying and testing applications in these plat-
forms (MARTINS; ARAUJO; CUNHA, 2020). Since the amount of existing legacy code
that must continue running is larger than new code created for serverless, the migra-
tion of existing code to serverless is an open research problem (CASTRO et al., 2019;
BALDINI et al., 2017; WEN et al., 2023; WEN et al., 2021).

In this context, the complexity of migrating different application profiles varies
significantly (GOLI et al., 2020). For example, applications that heavily rely on network
communication will experience substantial latency impacts based on the chosen de-

16

15

ployment region within the cloud provider. On the other hand, the performance of CPU
bound applications will depend on the vertical scalability options in the serverless plat-
form and the underlying hardware. In addition, serverless architectures are particularly
cost-efficient for workloads with highly fluctuating demand, whereas hosting dedicated
infrastructure is generally more economical for steady request patterns (PEKKALA,
2019; GOLI et al., 2020; LIU; NIU, 2023). It is important to note that these factors can
give rise to escalating costs, further emphasizing the significance of careful considera-
tion and analysis during the migration process. From a software migration standpoint,
predicting serverless costs from existing non-serverless workloads is specially helpful
when evaluating if the migration is financially worthwhile.

By definition, an I/O bound application spends more time doing I/O than perfor-
ming computations or network communication (SILBERSCHATZ; PETERSON; GAL-
VIN, 2012). I/O bound applications running on serverless such as MapReduce sort,
and distributed video processing often rely on the local file system for temporary or
intermediary storage (KLIMOVIC et al., 2018a). Serverless platforms support these
use cases by providing functions with a local file system for temporary storage with
potentially better performance when compared to other dedicated cloud storage servi-
ces for having lower or non-existent network overhead (AWS, 2023f; HELLERSTEIN
et al., 2018). Other applications can leverage it for caching static assets at lower costs
when compared to in-memory alternatives or external caching services (AWS, 2023e).
It can also be used to store extra libraries or tools while a function is running (LEE;
SATYAM; FOX, 2018). On the other hand, the lack of configuration options for local
storage on serverless creates a barrier for migrating an existing I/O bound application
to serverless while reliably meeting performance requirements. Since the cost of run-
ning an application on serverless depends on function execution time, the local storage
performance has direct impact on cost for I/O bound applications (KELLY; GLAVIN;
BARRETT, 2020). In addition, the high-level infrastructure abstraction that serverless
provides makes it difficult for developers to know how a given function will perform
(KIM; LEE, 2020).

In this sense, performance variability is a major issue for serverless applica-
tions running in the cloud and can be explained by the usage of shared hardware
by cloud services and configuration of compute and storage resources (ROY; PATEL;
TIWARI, 2021; KLIMOVIC et al., 2018a). High variability leads to the lack of perfor-
mance predictability. In addition, substantial disparities in performance and variability
can be observed not only within the serverless execution environments of a single pro-
vider but also when comparing different providers with the same configuration (JACK-
SON; CLYNCH, 2018; COPIK et al., 2021). These disparities are even larger for I/O
bound workloads (COPIK et al., 2021). Furthermore, serverless platforms do not of-

17

16

fer any explicit assurances regarding execution performance, nor are they obligated to
meet a predefined standard of performance (ELSAKHAWY; BAUER, 2021; HELLERS-
TEIN et al., 2018; MAISSEN et al., 2020; SINHA; KAFFES; YADWADKAR, 2024). From
a software migration standpoint, and since cost depends on performance, having pre-
dictable I/O in serverless platforms is specially helpful when evaluating if porting exis-
ting applications to serverless is financially worthwhile.

The current academic body of knowledge around serverless performance has
focused on the AWS Lambda platform and CPU-bound functions, at the expense of
local file system I/O workloads. Analyzing GCF enables investigating whether the con-
clusions previously drawn for AWS Lambda can also be applied to GCF. In addition,
there is a scarcity of studies that attempt to comparatively evaluate performance and
predictability in the serverless context, while the few existing attempts did not provide
enough statistical background to support significance claims (WEN et al., 2023). Fi-
nally, running a performance analysis in GCF in 2023 has the possibility of yielding
different results from previous work due to the release of 2nd gen functions in 2022
or other platform enhancements (PARK; KIM; LEE, 2020; LEE; SATYAM; FOX, 2018;
GCP, 2023a).

Previous work that studied local file system I/O workloads contributed in iden-
tifying isolated factors that can affect performance in this context. In addition, different
studies drawn divergent conclusions regarding a coincident factor. For this reason, the
lack of a comprehensive set of performance factors in the local file system I/O context
is also a gap. Having an aggregation of these performance factors enables develo-
pers from gaining a deeper understanding of the underlying dynamics of serverless
platforms and how it impacts cost.

The context of local file system I/O operations in serverless function environ-
ments, the black-box nature of serverless platforms and the aforementioned gaps led
to the following set of Research Questions (RQ):

• RQ1: What is the aggregation of factors that affect performance and predictability
in the context of local file system I/O operations from serverless functions?

• RQ2: Between AWS Lambda and GCF, which serverless provider yields the best
performance for local file system I/O operations? In this context, the comparison
should be evaluated from the perspective of a chosen performance metric.

• RQ3: Between AWS Lambda and GCF, which serverless provider has the most
predictable performance for local file system I/O operations? In this context, more
predictability means less variability and dispersion of performance.

18

17

Therefore, this work proposes a comparative analysis of performance and pre-
dictability between AWS Lambda and GCF functions for local file system workloads
through experimentation. Within the context of migrating I/O applications to serverless
environments, this analysis aim to offer insights that illuminate the black-box nature of
serverless platforms in terms of performance and predictability for I/O workloads. Even
though the aforementioned platforms provide access to a local file system from func-
tion code, they do not provide enough configuration options that allow for specifying
the performance levels to be expected from I/O operations. This analysis also aims to
provide insights into the performance behavior of serverless functions, while providing
developers more information on the performance level that can be expected for local
file system I/O operations in these platforms.

To the best of our knowledge, this work is the first to conduct this analysis on
2nd generation functions in GCF. Other cloud services that provide storage and can be
used in conjunction with serverless functions, like Amazon Simple Storage Service (S3)
and Google Cloud Storage (GCS), are not part of the scope for this work.

1.1 OBJECTIVES

This section presents the general and specific objectives of this work.

1.1.1 General

To perform a comparative analysis of the performance and predictability of local
file system I/O operations in AWS Lambda and GCF by means of experimentation
with the aim to help developers making informed decisions on migrating I/O bound
applications to serverless.

1.1.2 Specific

• From the literature and related work, to aggregate the factors that influence ser-
verless local file system I/O performance and predictability.

• To develop heuristics for creating a subset of factors that are relevant for experi-
mentation.

• To select an experiment design along with a number of repetitions and response
variables.

• To determine appropriate levels for the subset of relevant factors.

• To perform experiments using the selected factors and levels in AWS Lambda
and GCF.

19

18

• To analyze the results of the experiments.

• To establish a comparison of performance and predictability of local file system
I/O operations in AWS Lambda and GCF.

1.1.3 Contributions

This work aims to contribute by: 1) providing an aggregation of the factors
that influence performance and predictability and 2) a performance and predictability
comparison analysis of local file system I/O operations between AWS Lambda and 2nd
generation functions in GCF.

1.2 WORK STRUCTURE

This work is structured as follows: Chapter 2 lays the necessary theoretical
background to support the understanding of this work and the proposed performance
analysis including the following: Serverless technologies, file system I/O performance,
performance analysis and analysis of variance. Chapter 3 presents previous work re-
lated to this research including a discussion of their limitations and how this work aims
to fulfill them. Chapter 4 describes the methodology utilized for the experiments. Chap-
ter 5 presents the experiments and results to support the performance and predictabi-
lity comparisons discussed in Chapter 6. Finally, Chapter 7 showcases the conclusions
and opportunities for future work.

20

19

2 BACKGROUND

This chapter provides the necessary background to understand the proposed
performance and predictability analysis in this work. First, Section 2.1 discusses as-
pects related to serverless applications in general, as well as specifics related to AWS
Lambda and GCF. Next, Section 2.2 presents the foundational theory concerning per-
formance analysis and relevant terminology used throughout this work, followed by an
overview of Analysis of Variance (ANOVA) in Section 2.3 as applied to experiments
involving one or more factors. Finally, Section 2.4 introduces concepts specific to eva-
luating performance in the context of file system I/O.

2.1 SERVERLESS APPLICATIONS

Serverless enables running a server-based application without having to ma-
nage a server. Consumers of serverless platforms do not need to deal with tasks such
as provisioning, maintenance, updates, scaling and capacity planning of server resour-
ces. Instead, these responsibilities and functionalities are seamlessly managed by a
serverless platform and entirely abstracted away from developers and Information Te-
chnology (IT) operation teams. This abstraction enables developers to concentrate their
efforts on crafting the core business logic of their applications (ALLEN et al., 2023). Mo-
reover, developers can implement stateless microservices as serverless functions that
can cooperate to support complex business functionality (KATZER, 2020).

Functions are executed by the platforms based on event triggers such as HTTP
requests or messages from managed queues. Every time a function is triggered in a
cloud hosted serverless provider, it executes in a server host via a container provisi-
oned and managed by the platform (JACKSON; CLYNCH, 2018). Functions in a ser-
verless architecture are designed to be stateless and short-lived, meaning they do not
retain any internal state and are automatically deprovisioned if idle for a certain dura-
tion. While idle, warm function instances can be reused to respond to new requests
without launching new instances. The size of a function can be determined by the CPU
and memory resources allocated to it, which developers configure during setup on the
serverless cloud platform. Furthermore, functions have the capability to interact with
temporary storage using the local file system, allowing them to handle data that is re-
quired during their execution but does not need to be persistent (SREERAM, 2017;
AWS, 2023l; GCP, 2023i).

One of the main advantages of serverless is its pay-per-use billing model, in
which cloud providers do not charge for idle time. Even though serverless pricing varies

21

20

between providers, it generally depends on function size, temporary storage size, num-
ber of executions, data transfer and execution time. The minimum increment measured
for function execution time also differs between cloud providers. In addition, serverless
functions have automatic horizontal scalability depending on load while the infrastruc-
ture abstraction provides out-of-the-box security and reliability (KATZER, 2020).

Serverless function invocations can be categorized as either ”warm” or ”cold”
starts. When a function is invoked for the first time or after a period of inactivity, a new
function instance is created, resulting in a "cold start". This initial invocation incurs addi-
tional overhead due to the container instantiation process. However, subsequent invo-
cations of the same function can leverage the existing instance, avoiding this overhead
and they are referred to as "warm starts". Cloud platforms typically retain existing idle
instances for a limited period of time to handle future invocations, after which they may
evict them to reclaim resources (SCHIRMER et al., 2023; WEN et al., 2021). This pe-
riod of time is not configurable by developers. Consequently, function instances can
suddenly terminate leading to unexpected cold starts (WANG et al., 2018; EISMANN
et al., 2022).

Serverless platforms share the same approach to executing functions. Each
function operates within a designated function container on a host Virtual Machine (VM)
located within a predefined region of the respective serverless platform’s cloud infras-
tructure. Usually, these execution VMs maintain isolation from other individual users.
Nonetheless, it is possible for VMs of distinct users to coexist within the same region,
potentially giving rise to instances of interference effects (KELLY; GLAVIN; BARRETT,
2020). In addition, it is possible for multiple function instances of the same user to co-
exist in a host VM, leading to interference effects due to concurrent executions on the
same host (KIM; LEE, 2020; LEE; SATYAM; FOX, 2018). This lack of isolation can lead,
for example, to network I/O throughput contention when multiple function instances are
concurrently running on the same host.

Even though functions can connect to other cloud storage services to share
data between executions, this connection is made through a network interface. For this
reason, recent studies showed the bandwidth experienced for these connections are an
order of magnitude slower than a single modern Solid State Drive (SSD) (HELLERS-
TEIN et al., 2018). Alternatively, serverless functions can leverage a local file system for
temporary storage with better performance when compared to other storage alternati-
ves (AWS, 2023f). In AWS Lambda, this local file system is shared between function
instances running on the same host VM (MAISSEN et al., 2020), while GCF provides
more isolation to memory, global variables, file systems and application state (GCP,
2023e). Still, none of these serverless platforms offer developers the ability to provi-
sion the desired amount of Input/Output Operations Per Second (IOPS) and bandwidth

22

21

for local temporary storage.

While increasingly accessible, the serverless computing paradigm is relatively
new and proves most advantageous for: Asynchronous and easily parallelized worklo-
ads, resources with infrequent or sporadic demand, ephemeral and stateless applica-
tions and for highly dynamic businesses that require agile developer responsiveness
due to changes in requirements. Currently, it represents an emerging computing model
that encounters challenges in terms of standardization, ecosystem maturity, and the
availability of comprehensive and stable documentation, as well as a set of established
best practices (ALLEN et al., 2023). The following sections present the main aspects
of serverless offerings from AWS Lambda and GCF along with their specific features.

2.1.1 Features from AWS Lambda and GCF

In AWS Lambda, developers can configure the memory allocated to a function,
which in turn determines the amount of virtual CPU available to it. Adding more memory
proportionally increases the amount of CPU, making memory allocation a crucial factor
in this context. Currently, functions have the equivalent of 1 vCPU for every 1769 MB
of allocated memory (AWS, 2023j). Execution time is measured in 1 ms increments. In
AWS Lambda developers are not able to configure bandwidth or IOPS for temporary
storage while its size can be increased independently from memory. Developers can
choose between using the local temporary storage or other storage offerings on AWS
to support AWS Lambda functions.

AWS Lambda also supports external extensions to augment functions with mo-
nitoring, observability, security, and governance tools (AWS, 2023h). In this context,
Fig. 1 presents the lifecycle of the execution environment of a AWS Lambda functions.
The Initialization phase (INIT) starts upon a function’s trigger, subsequently leading to
the execution of the function’s code in the Invocation phase (INVOKE). The runtime
environment has the potential to be recycled for subsequent invocations and will run
INVOKE without needing a new INIT. The runtime environment is reused until the plat-
form determines it is appropriate for shutdown.

Figure 1 – AWS Lambda execution environment lifecycle
Source: The author

In GCF CPU allocation for a function is also derived from the memory allocated

23

22

by developers. In contrast to AWS Lambda, the resource allocation options for GCF
are divided in tiers (GCP, 2023g). The local file system is held in memory for GCF,
which means that the size of its underlying storage cannot be increased independently
and any consumed space is taken from the overall memory allocated of the function.
Execution time is measured in 100 ms increments (GCP, 2023b). Similarly to AWS
Lambda, GCF does not offer configuration options for bandwidth or IOPS related to
temporary local storage. The lifecycle of functions in GCF is also represented by Fig. 1
with the exception of the external extensions steps (green) since it is an AWS Lambda
specific feature.

Google announced the general availability of 2nd gen GCF in 2022 (GCP,
2023a). When compared to 1st gen functions, 2nd gen GCF has a wider range of re-
source allocation tiers, allows for a higher limit of function execution time, among other
features. From the user’s standpoint, GCF has progressed across various dimensions
from its first generation while upholding its foundational principles. Consequently, this
work adopts a broad reference to GCF, while exclusively distinguishing between 1st
and 2nd generation functions for generation-specific attributes.

The support provided by serverless platforms to some features can vary. Ta-
ble 1 was inspired by (COPIK et al., 2021) and presents an updated comparison
between features in AWS Lambda and GCF (GCP, 2023f; AWS, 2023g; GCP, 2023j;
AWS, 2023k; AWS, 2023c; GCP, 2023g; AWS, 2023d; GCP, 2023b; AWS, 2023i; GCP,
2023h; AWS, 2023j; AWS, 2023m; GCP, 2023c). The most notable additions are rela-
ted to the 2nd generation functions in GCF.

AWS Lambda supports a total of 6 programming languages natively while GCF
supports 7 being PHP the differentiating factor. Nevetherless, AWS Lambda supports
custom runtimes through containers with a compatible Linux image, thus virtually al-
lowing any language runtime to operate on the platform’s environment. Google allows
for similar customization along with container support outside of GCF in Google Cloud
Run (GCR).

Even though the serverless paradigm aims for short-lived functions, AWS Lambda
and GCF have been improving the time limits for function executions. AWS Lambda
announced an increase in time limit from 5 to 15 minutes in 2018 (AWS, 2023b) while
GCF increased this limit in the annoucement of the 2nd gen functions (GCP, 2023a).

The support for static memory allocation provided in AWS Lambda allows for
configuring any value between 128 MB and 10 GB (AWS, 2023c), even though new
AWS accounts are limited to 3 GB. From the documentation, it is not clear how or
when an AWS account gets allowed for allocating 10 GB to Lambda functions (AWS,
2024). In contrast, GCF employs a tiered approach in which developers must select

24

23

Table 1 – Comparison of features between AWS Lambda and GCF

Feature AWS Lambda GCF

Native languages Python, Node.js, C#, Java,
Ruby and Go

Python, Node.js, C#, Java,
Ruby, Go and PHP

Custom runtime support Yes, through containers No. Suggests Google
Cloud Run as an alterna-
tive serverless platform
with more customization
options

Time limit 15 minutes 9 minutes for 1st gen func-
tions and up to 60 minutes
for 2nd gen

Memory allocation Static. From 128 MB to 10
GB. New accounts are li-
mited to 3 GB

Tiered. From 128 MB to
8192 MB in 1st gen. From
128 MB to 32 GB in 2nd
gen

CPU allocation Proportional to memory. 1
vCPU at 1769 MB

Proportional to memory
tier. 1 vCPU at 2048 MB

Billing Number of invocations,
duration, allocated me-
mory and temporary disk
size

Number of invocations,
duration and memory tier

Default maximum con-
current function invoca-
tions

1000 No limit for 1st gen. 1000
for 2nd gen

Temporary disk space Between 512 MB and 10
GB, in 1 MB increments

File system held in me-
mory. Cannot be provisi-
oned independently and
consumes space from me-
mory

Source: Adapted and updated from (COPIK et al., 2021)

25

24

a memory tier, with limited flexibility for in-between values. CPU is tied to memory
allocation in both cases, with approximately 1.74 vCPU available in AWS Lambda when
setting memory to 3 GB. Comparatively, selecting the highest resource tier of 2nd gen
functions in GCF allows for allocating 32 GB of memory alongside 8 vCPU to a runtime.

In the context of serverless costs, billing is similar for both platforms: Price is
calculated from the number of invocations, execution duration and allocated resources.
The temporary disk space in AWS Lambda can be provisioned independently from me-
mory and consequently is billed separately at lower rates when compared to memory
(AWS, 2023e).

Automatic service scaling is one of the main benefits of serverless architec-
tures. Platforms can horizontally scale environments up to thousands of function ins-
tances depending on application load. In this context, platforms employ a configurable
limit for the maximum number of concurrent function invocation. This feature sets a
scalability ceiling that prevents serverless costs from increasing unexpectedly. GCF
2nd gen evolved to match the default configuration for maximum concurrent function
invocations of AWS Lambda.

2.2 PERFORMANCE ANALYSIS

Performance analysis is a combination of measurement, interpretation and
communication (LILJA, 2005). Measurement involves determining a performance me-
tric interesting and useful to measure. This selection depends on factors such as the
goals of the performance analysis or the cost and complexity of collecting the selec-
ted metric (LILJA, 2005). Selecting an inappropriate performance metric can result in
misleading claims about the result of the analysis. The execution time of programs is
considered a consistent and reliable performance metric, and can be defined as the
latency to complete a task including all associated subtasks (HENNESSY; PATTER-
SON, 2017). Measuring execution time in a computer system is analogous to using a
stopwatch to observe the time required for some event to occur (LILJA, 2005). This
metric can be categorized as Lower is Better (LB), meaning that smaller values are
preferable (JAIN, 1991). In the context of file I/O, latency can be observed from the
perspective of read or write operations.

The interpretation phase of the analysis involves utilizing the collected me-
asurements to achieve the objectives of the study. Performance analysis commonly
pursues goals such as comparing alternatives, assessing the impact of new features,
system optimization, and tuning, among others. When comparing alternatives, the aim
is to quantitatively determine the best configurations under specific conditions based
on performance metrics. Finally, the output of the interpretation phase is employed to

26

25

communicate and report the analysis results in a clear and consistent manner, while
also providing sufficient information to ensure reproducibility (HENNESSY; PATTER-
SON, 2017; LILJA, 2005).

Performance variability is the measure of dispersion of a group of measure-
ments with the aim to quantify how spread out these measurements are. More variabi-
lity of performance data means less performance predictability. This index of dispersion
can be used alongside an index of central tendency, such as the mean or median, to
characterize a group of measurements. The standard deviation can be used as an in-
dex of dispersion even though it needs to be interpreted relative to the mean value of
the group of measurements. In this context, the CV normalizes the standard deviation
with respect to the mean to provide a dimensionless value. The CV compares the size
of the variation with the mean value of the group of measurements (LILJA, 2005). In
the context of serverless file I/O, this variability metric relates to the predictability of the
performance of I/O operations. Eq. 2.1 defines the CV related to the standard devia-
tion 𝑠 and the mean �̄�. The CV is commonly represented as a percentage. It is an LB
metric, meaning less CV results in more predictability.

𝐶𝑉 = 𝑠/�̄� (2.1)

Collecting observations for the chosen performance metric typically involves
experimentation. The primary objective of experimentation is to maximize the amount
of information acquired while minimizing the total number of experiments conducted.
For the design and analysis of experiments, researchers often utilize the following ter-
minology (JAIN, 1991; LILJA, 2005):

• Response variable: Can be defined as the measured performance metric or the
outcome of the experiment.

• Factors: Variables that affect the response variable and consequently affect the
performance metric.

• Levels: Indicate the possible values a factor can take (e.g., memory size levels
such as 512 kB or 2 MB)

• Replication: Refers to the number of experiment repetitions. Replications are ne-
cessary for gauging measurement errors.

• Interaction: Occurs when two factors affect each other, leading to a dependency
of one factor’s effect on the response variable based on the level of the other.
Conversely, a factor with no interaction independently influences the response
variable, irrespective of the presence of other factors and their levels.

27

26

The full factorial experiment design involves using all possible combinations
of levels and factors to observe their impact in the response variable. In an example,
applying this technique for 5 factors and 3 levels per factor would result in 35 expe-
riments. Adding replications would escalate the number of experiments even further
(JAIN, 1991).

Alternatively, the 𝑛2𝑚 experiment design is used to determine the effect of 𝑚

factors to the response variable. This technique involves 𝑛 replications of the experi-
ment and is restricted to two levels per factor. These levels are commonly chosen to
be the minimum and maximum possible values of a factor (JAIN, 1991). This appro-
ach simplifies the analysis of the measured data while allowing for determining which
factors have the largest impact on the response variable. The most important factors
can then be examined in more detail in a full factorial experiment with a larger number
of levels (LILJA, 2005). The number of experiments 𝐸 can be defined as a function of
𝑚 factors, 𝑙 levels and 𝑛 replications. Eqs. 2.2 and 2.3 present this relationship for full
factorial and 𝑛2𝑚 designs, respectively.

𝐸 = 𝑛𝑙𝑚 (2.2)

𝐸 = 𝑛2𝑚 (2.3)

In this context, ANOVA serves as a robust technique for comparing alternatives
and can be used to quantify which fraction of the variation of the response variable can
be explained by the factors, their interactions and measurement errors (LILJA, 2005).

2.3 ANALYSIS OF VARIANCE (ANOVA)

Section 2.3.1 describes ANOVA and its usage in one-factor experiments. Further-
more, Section 2.3.2 presents a generalization of its concept to two-factor and m-factor
experiments.

2.3.1 ANOVA and one-factor experiments

ANOVA originates from the partition of the total variability of data into its com-
ponent parts. The measure of total data variability in a single-factor experiment with
𝑎 levels and 𝑛 observations per level derives from the corrected sum of squares 𝑆𝑆𝑇

described in Eq. 2.4. In this context, 𝑦𝑖𝑗 represents the response variable measured
for level 𝑖 and observation 𝑗, and 𝑦.. stands for the grand average of all observations
(MONTGOMERY, 2017).

28

27

𝑆𝑆𝑇 = Σ𝑎
𝑖=1Σ𝑛

𝑗=1(𝑦𝑖𝑗 − 𝑦..)2 (2.4)

Furthermore, the total variability in the data represented by the corrected sum
of squares 𝑆𝑆𝑇 can be partitioned into two other components. The first component
𝑆𝑆𝐿, described in Eq. 2.5, relates to the sum of squares of the differences between
the level averages 𝑦𝑖. and the grand average 𝑦.., and represents the variation due to
the effects of the level differences. The second component 𝑆𝑆𝐸, described in Eq. 2.6,
relates to the sum of squares of the differences of observations within levels 𝑦𝑖𝑗 from
the level average 𝑦𝑖., and represents the variation due to random errors. Finally, 𝑆𝑆𝑇

is presented as a combination of both components in Eq. 2.7 (MONTGOMERY, 2017;
LILJA, 2005).

𝑆𝑆𝐿 = 𝑛Σ𝑎
𝑖=1(𝑦𝑖. − 𝑦..)2 (2.5)

𝑆𝑆𝐸 = Σ𝑎
𝑖=1Σ𝑛

𝑗=1(𝑦𝑖𝑗 − 𝑦𝑖.)2 (2.6)

𝑆𝑆𝑇 = 𝑆𝑆𝐿 + 𝑆𝑆𝐸 (2.7)

In this context, the fraction of the total variation explained by the differences
between levels can be represented by 𝑆𝑆𝐿/𝑆𝑆𝑇 . Similarly, 𝑆𝑆𝐸/𝑆𝑆𝑇 is the fraction of
the total variation explained by random errors. The F-test can be used do determine
if the differences between these fractions are statistically significant at a level of sig-
nificance 𝛼. To test this hypothesis, the 𝐹0 value is compared to a critical value 𝐹𝑐𝑟𝑖𝑡

obtained from the F distribution. This critical value depends on the significance level
𝛼, described by the 1 − 𝛼 parameter, as well as the number of degrees of freedom
for both the factor being tested and the random errors, defined by 𝑎 − 1 and 𝑎(𝑛 − 1)
respectively. If 𝐹0 is bigger, then the effect of the factor being tested is statistically dif-
ferent from the effect of random errors (LILJA, 2005). This comparison is described in
Eq. 2.8. The 𝐹0 value is the computation of the ratio between the mean-square values
of 𝑆𝑆𝐿 and 𝑆𝑆𝐸. The mean-square value is the total variation for a component divided
by its corresponding degrees of freedom, while the number of degrees of freedom for
the levels and random errors are 𝑎−1 and 𝑎(𝑛−1), respectively. Finally, Eq. 2.9 defines
𝐹0 (MONTGOMERY, 2017).

𝐹0 > 𝐹𝑐𝑟𝑖𝑡[1 − 𝛼, 𝑎 − 1, 𝑎(𝑛 − 1)] (2.8)

29

28

𝐹0 = 𝑆𝑆𝐿/[𝑎 − 1]
𝑆𝑆𝐸/[𝑎(𝑛 − 1)] (2.9)

2.3.2 ANOVA applied to two-factor and m-factor experiments

The idea of the ANOVA for single-factor experiments can be extended to ac-
commodate two factors, with the addition of the effects derived from the interaction
between factors. Consequently, the total variation in the measurements 𝑆𝑆𝑇 should be
partitioned into the variation explained by random error 𝑆𝑆𝐸 and the level differences
in factors A and B as well as their interaction, represented by 𝑆𝑆𝐴, 𝑆𝑆𝐵 and 𝑆𝑆𝐴𝐵,
respectively. This relationship is presented in Eq. 2.10 (LILJA, 2005).

𝑆𝑆𝑇 = 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐴𝐵 + 𝑆𝑆𝐸 (2.10)

Conversely to the one-factor experiments, the response variable 𝑦 for two-
factor experiments are subject to a three dimensional matrix. Consequently, 𝑦𝑖𝑗𝑘 is the
k th measurement made with level 𝑖 of factor A and level 𝑗 of factor B. Assuming 𝑛 me-
asurements were made and factors A and B have 𝑎 and 𝑏 possible levels, respectively,
the sums of squares 𝑆𝑆𝐴 and 𝑆𝑆𝐵 for these factors are defined in Eq. 2.11. The sum
of squares 𝑆𝑆𝐴𝐵 for the interaction between factors A and B is presented in Eq. 2.12
(LILJA, 2005).

Similarly to one-factor experiments, 𝑦𝑖.. is the level average of all measure-
ments made with any level of factor B while factor A is set to level 𝑖. Alternatively, 𝑦.𝑗.

is the level average of all measurements made with any level of factor A while factor B
is set to level 𝑗. Finally, 𝑦𝑖𝑗. is the average of all measurements with levels 𝑖 and 𝑗 set
to factors A and B, respectively, while 𝑦... is the grand average of all observations with
any level of factor A and B.

𝑆𝑆𝐴 = 𝑏𝑛Σ𝑎
𝑖=1(𝑦𝑖.. − 𝑦...)2, 𝑆𝑆𝐵 = 𝑎𝑛Σ𝑏

𝑗=1(𝑦.𝑗. − 𝑦...)2 (2.11)

𝑆𝑆𝐴𝐵 = 𝑛Σ𝑎
𝑖=1Σ𝑏

𝑗=1(𝑦𝑖𝑗. − 𝑦𝑖.. − 𝑦.𝑗. − 𝑦...)2 (2.12)

In addition, the sum of squares for the random errors 𝑆𝑆𝐸 is defined in Eq. 2.13.
Finally, the total variability present in the measurements can be represented by the sum
of squares 𝑆𝑆𝑇 presented in Eq. 2.14.

𝑆𝑆𝐸 = Σ𝑎
𝑖=1Σ𝑏

𝑗=1Σ𝑛
𝑘=1(𝑦𝑖𝑗𝑘 − 𝑦𝑖𝑗.)2 (2.13)

30

29

𝑆𝑆𝑇 = Σ𝑎
𝑖=1Σ𝑏

𝑗=1Σ𝑛
𝑘=1(𝑦𝑖𝑗𝑘 − 𝑦...)2 (2.14)

In the context of the F-test applied to two-factor experiments, the 𝐹𝐴, 𝐹𝐵 and
𝐹𝐴𝐵 terms correlate to the computation of the mean-square values of the factors and
interactions divided by the mean-square value of random errors. The 𝐹 values for the
two-factor experiments are presented in Eq. 2.15. Similarly to the one-factor experi-
ments, these values should be compared to a critical value 𝐹𝑐𝑟𝑖𝑡 from the F distribution,
as shown in Eq. 2.8, that in turn depends on the level of significance 𝛼, the number
of degrees of freedom of the factor or interaction being evaluated, and the number of
degrees of freedom of random errors. The F-test applied to this context allows for de-
termining whether the effects of the factors or interactions are statistically significant to
the response variable. The number of degrees of freedom for random errors is 𝑎𝑏(𝑛−1),
while 𝑎 and 𝑏 are the number of levels factors A and B can assume. In addition, the
number of degrees of freedom for factors A and B can be defined as 𝑎−1 and 𝑏−1, res-
pectively. Consequently, the number of degrees of freedom for the interaction between
factors A and B is the product (𝑎 − 1)(𝑏 − 1) (MONTGOMERY, 2017; LILJA, 2005).

𝐹𝐴 = 𝑆𝑆𝐴/[𝑎 − 1]
𝑆𝑆𝐸/[𝑎𝑏(𝑛 − 1)] , 𝐹𝐵 = 𝑆𝑆𝐵/[𝑏 − 1]

𝑆𝑆𝐸/[𝑎𝑏(𝑛 − 1)] , 𝐹𝐴𝐵 = 𝑆𝑆𝐴𝐵/[(𝑎 − 1)(𝑏 − 1)]
𝑆𝑆𝐸/[𝑎𝑏(𝑛 − 1)] (2.15)

The usage of ANOVA for two-factor experiments can be generalized for m-
factor experiments given that 𝑚 > 2. However, the computational complexity of per-
forming this analysis progressively increases with more factors, and more importantly,
with the increasing number of interactions between factors (LILJA, 2005). In practice,
ANOVA is performed with the assistance of specialized software.

Even though ANOVA allows for identifying the statistically relevant factors and
interactions, it does not allow for comparing them. The Tukey test is a method to com-
pare pairs of means and can be used to compare levels, factors or interactions by
providing a confidence level of the difference between the means being compared
(MONTGOMERY, 2017).

The following section presents an analysis example in the context of perfor-
mance experiments. This example was developed with the aim to facilitate the unders-
tanding of the analysis’ steps, relevant variables, and resulting insights that can exist in
a simplified scenario using ANOVA and the Tukey test.

2.3.3 ANOVA example applied to a performance experiment

The example consists of a two-factor performance experiment in the server-
less context. The first factor is the amount of memory allocated to the tested function,

31

30

with levels defined as 128 MB (small) and 8192 MB (large). The second factor is the
serverless platform. In this case, it can be either AWS Lambda or GCF. The response
variable is the execution time for a certain request measured in milliseconds. Table 2
presents the sample data used throughout the example with this setup.

Table 2 – Sample data for ANOVA example

Serverless provider execution time (ms)

Memory (MB) AWS Lambda GCF

128 (Small - S) (59.31, 56.98, 58.26) (80.62, 76.54, 81.08)
8192 (Large - L) (67.84, 68.17, 67.32) (65.53, 65.67, 64.81)

Source: The author

ANOVA calculations were performed for this example’s sample data using R
Studio (POSIT, 2023) with a confidence level of 99% (𝛼 = 0.01). Table 3 presents the
ANOVA table calculated for the sample data.

Table 3 – Resulting ANOVA table for the example

Source of Variation Degrees
of Freedom

Sum of Squares
𝐹 Value 𝐹𝑐𝑟𝑖𝑡[0.99, 1, 8]

Absolute % of total

Memory
1

15.1 2.1 7.5

11.3Provider 264.8 36.9 132.3
Memory:Provider 420.2 58.7 210.0
Residuals 8 16.0 2.2

Total 11 716.1 100

Source: The author

Comparing the 𝐹 values to the 𝐹𝑐𝑟𝑖𝑡 allows for determining whether the effects
of the factors or interactions are statistically significant to the response variable (ser-
verless provider time) with a set confidence level. In this case, the effect of memory
is not significant while the effects of the serverless provider choice and the interaction
between memory and provider (Memory:Provider) are significant with a conficence le-
vel of 99%. A significant interaction means that the effect of memory to the response
variable was different in each provider, even though memory was not significant by
itself.

Analyzing the resulting sum of squares allow for determining which compo-
nents are responsible for the variation in performance data. Residuals accounted for
around 2% of total variation, meaning that most of the variation was due to the ef-
fect factors or interactions. Memory was responsible for 2.1% of total variation, which
confirms the conclusion previously drawn for the 𝐹 value that the effects of this fac-
tor are not significant to the response variable. Alternatively, the serverless provider

32

31

and the interaction between provider and memory (Memory:Provider) were collectively
responsible for 95.6% total variation and are significant to the response variable.

Even though this analysis allows for identifying the statistically relevant factors
and interactions, it does not allow for comparing them. Therefore, the Tukey test can be
used to compare factors within the data. Fig. 2 presents the confidence intervals for the
means of the differences between factors or interactions. In this context, confidence
intervals that include 0 mean that there are no evidences of statistically significant
differences between the factors or interactions being compared.

The confidence interval for the difference of the means of AWS Lambda and
GCF observations (Lambda-GCF) is negative, which means GCF had higher values
for the response variable. Since execution time is a LB metric, it means AWS Lambda
had better general performance for the experiment. Similarly, the confidence interval
for the difference of the means of AWS Lambda and GCF observations with small
memory values (S:Lambda-S:GCF) is also negative, which means AWS Lambda had
better performance for small memory configurations.

Alternatively, the confidence interval for the difference of the means of AWS
Lambda and GCF observations with large memory values (L:Lambda-L:GCF) inclu-
des zero, which means we cannot affirm there is a statistically significant difference of
performance between these providers for this memory configuration.

L:Lambda−L:GCF

Lambda−GCF

S:Lambda−S:GCF

−20 −10 0
Mean Value

G
ro

up

Group
L:Lambda−L:GCF
Lambda−GCF
S:Lambda−S:GCF

Figure 2 – Confidence intervals for the mean differences in Tukey test
Source: The author

This simplified example highlights how ANOVA can be used to check whether
factors and interactions are statistically significant to the response variable, and how
the Tukey test can be used for comparative analysis. This work leverages both statistics
tools and the principles presented in this example to evaluate performance in a real
scenario that includes a wider range of factors, interactions and levels in the serverless

33

32

context.

2.4 FILE SYSTEM I/O PERFORMANCE

The performance of file systems often take precedence over storage devices
performance for I/O applications. This is because applications directly interact with
the file system rather than the storage device itself, creating an abstraction layer that
enables optimizations and caching techniques aiming to reduce the time applications
wait for an I/O operation to finish. In this context, logical I/O operations are issued by
applications to the file system, while physical I/O operations are issued by file systems
to storage devices. Latency is measured as the time it takes for a logical file system
request to reach completion. One strategy to study performance in this context is to
focus on the latency of logical I/O operations while treating the file system as a black
box (GREGG, 2014).

Random read, sequential read, random write, and sequential write are com-
monly tested operations for file system I/O performance analysis (GREGG, 2014). In
the context of file operations, the sequential access pattern involves the reading or wri-
ting of all bytes or records in a continuous order, progressing from the file’s start to its
end. In contrast, the random access pattern relates to the non-sequential retrieval or
modification of data within the file, requiring an initial position from which the opera-
tion begins, rather than obligatorily starting from the first byte of the file (TANENBAUM;
BOS, 2014). The Device-to-Device copy (dd) command can be used as an ad hoc ben-
chmark tool for file system performance of sequential read and write operations (GNU,
2023).

The caching techniques employed by file systems often involve holding data
in memory for faster read and write operations (TANENBAUM; BOS, 2014). For this
reason, the latency experienced by I/O applications depends on the amount of memory
available, the I/O size and the Working Set Size (WSS) being read or written. The WSS
relates to the size of the file being writte or read, or the volume of data being accessed
while I/O size relates to the amount of data transferred by each I/O. Since starting an
I/O operation has a performance cost, applications executing random I/O operations
might benefit from small I/O sizes, while large I/O sizes are more suited for sequentially
reading or writing on large files. In the context of a read operation, a small WSS may
return entirely from cache while a large WSS may need to be read from a storage
device with bigger performance cost (GREGG, 2014).

Understanding aspects specific to file system operations, while narrowing down
from general performance analysis concepts, is key to evaluating performance and pre-
dictability in this context. For instance, latency was used as the response variable for

34

33

performance experiments in this work while having I/O access patterns and operation
types alongside the file size as factors. In addition, the existence of caching behavior
on the file system layer is a important factor when analyzing performance results and
defining WSS levels.

35

34

3 RELATED WORK

This chapter presents previous studies related to the performance and predic-
tability analysis performed in this work. First, we present previous research that identi-
fied and discussed factors that affect I/O performance in the serverless context. Then,
we discuss other work that approached I/O performance evaluations of serverless-
compatible shared file systems such as Elastic File System (EFS). Even though sha-
red file systems are out of scope for this work, previous research around this topic
assists in understanding general aspects of serverless I/O performance analysis. Fi-
nally, we present studies that closely relate to the scope of this work and evaluated I/O
performance specifically for serverless local file system workloads followed by other
work that discussed aspects related to serverless performance predictability. This col-
lection of related work is then discussed in Section 3.5 along with an aggregation of
factors identified on previous research that impact the performance and predictability
of serverless local file system I/O workloads.

3.1 FACTORS AFFECTING SERVERLESS I/O PERFORMANCE

The work of (EISMANN et al., 2022) conducts a performance evaluation in
AWS Lambda for a multi-function, network I/O bound serverless application. It was
found that performance varies significantly over long periods of time even though it
is stable within multiple function executions in the same day. For this reason, perfor-
mance measurements should be performed periodically so as to keep up with optimi-
zations and improvements to the underlying hardware of serverless providers. Long
term performance fluctuations are also due to extended warm-up periods of function
environments. Furthermore, the study revealed that the overall performance is adver-
sely affected by the presence of multiple concurrent function executions on the same
host. Serverless platforms control the allocation of function instances to hosts, conse-
quently, this factor is not under the control of developers. Additionally, cold starts can
unpredictably occur as a result of function instances being recycled by the platform.
Although this research did not explicitly address GCF, nor did it specifically concen-
trate on file system I/O performance, its findings make a valuable contribution to the
broader comprehension of performance behavior within AWS Lambda serverless en-
vironments.

Alternatively, the findings in (GINZBURG; FREEDMAN, 2020) suggest that ser-
verless performance can be affected by time of day and deployment region. Bench-
mark results from a variety of application classes demonstrated spatial and temporal

36

35

performance patterns in AWS Lambda meaning that developers can take advantage
of function placement and time-shifting workloads to achieve better performance and
minimize costs. Furthermore, the study revealed varying levels of performance varia-
bility among different application classes. Even though one of the applications tested
involved file system I/O, the study was dedicated to exploring spatial and temporal per-
formance patterns and not the latency of isolated file system operations. In addition,
this research focused on AWS Lambda and did not extend its analysis to encompass
comparisons across other serverless providers.

The work in (JACKSON; CLYNCH, 2018) had used empty functions deployed
to AWS Lambda and Microsoft Azure Functions (MAF) to investigate the impact of
programming language runtime to warm and cold start performances. The findings re-
vealed significant performance differences not only among different language runtimes
within the same provider but also across both serverless platforms for the same lan-
guage runtime. The C# .NET runtime demonstrated the best overall performance when
executed in MAF. This performance advantage can be attributed to differences in plat-
form implementation. Specifically, MAF utilizes Windows container technology, while
AWS Lambda relies on Linux-based containers. This study exposes the cost implica-
tions of choosing a poorly performing language runtime for a serverless provider and
the impact of platform implementation to performance.

The impact of language runtime to performance was also evidenced in (BOR-
TOLINI; OBELHEIRO, 2020) alongside the memory allocated to functions. The expe-
riments were conducted in AWS Lambda, GCF and IBM Cloud Functions for a CPU-
bound function. Results showed performance differences of up to 15x depending on
the choice of programming language. It was also found that memory allocation has an
impact in performance and cost with different magnitudes depending on the serverless
provider.

The study in (SCHIRMER et al., 2023) has used a CPU-bound function de-
ployed on GCF to analyze performance variability over several months. The results
revealed performance discrepancies of up to 15% within a single day since executions
during business hours tend to be slower. This observation aligns with the findings re-
ported by (LAMBION et al., 2022) in a study of AWS Lambda across four deployment
regions, where similar patterns were observed for executions within the same day. In
addition, significant performance differences were found between measurements taken
over the week and weekends. Cold start occurrences also increased during working
hours, indicating higher instance recycling during periods of high demand. Additionally,
it was observed that performance variability decreased as more memory and CPU re-
sources were allocated to the function, making it more predictable. It is noteworthy that
this research focused exclusively on performance within GCF and did not investigate

37

36

file system I/O bound functions or has explored platforms beyond GCF. Nonetheless,
these studies demonstrated how factors such as time of day and day of the week can
impact function performance and highlighted the sensitivity of performance predictabi-
lity to function resource configuration.

The SeBS benchmark suite introduced in (COPIK et al., 2021) covered a range
of serverless applications including functions for multimedia and scientific workloads.
The benchmarks in SeBS were evaluated in AWS Lambda, GCF and MAF to provide
insights into platform performance and consistency. The results showed I/O related
workloads had higher distribution of latencies and more outliers when compared to
other experiments. In addition, it was found that I/O performance increased with more
memory allocated to functions, and that AWS Lambda was faster in most of the tested
scenarios. In contrast, the findings in (LLOYD et al., 2018) suggest the relationship
between performance and function resources may not be linear, as adding additional
resources have shown diminishing returns in improving function performance. Even
though SeBS provided new insights to performance behavior in serverless, its ben-
chmarks were not focused on I/O nor isolated file system I/O operations during the
experiments.

A benchmarking suite was also introduced in (MARTINS; ARAUJO; CUNHA,
2020) with the aim to test the effects of memory allocation, the performance of CPU-
bound cases, the impact of the choice of programming language, overall platform
overhead, among others. The tested providers were AWS Lambda, GCF, MAF and IBM
OpenWhisk. The findings suggested significant impact of memory allocation to func-
tion performance. In contrast, it was found that in general the choice of programming
language does not affect warm start performance within the same serverless provider,
even though different platforms might deliver different performance levels for the same
programming language. The overhead imposed by serverless providers’ platforms was
tested by running a function with very low computational effort and measuring its la-
tency. It was found that the platform overhead was negligible between AWS Lambda,
GCF and MAF, even though it was significant for IBM OpenWhisk. The comparisons
made for the tested factors were not statistically backed, and there was no evaluation
of performance variation.

3.2 SERVERLESS SHARED FILE SYSTEM I/O PERFORMANCE

Even though serverless functions have access to a local file system, its un-
derlying storage is not accessible by other function runtimes. Some applications require
sharing data in a remote data storage. This capability is commonly achieved through
storage offerings such as EFS and S3 from AWS, and Cloud Storage from Google
Cloud Platform (GCP) (AWS, 2023f; GCP, 2023d). The following related work inves-

38

37

tigated file system I/O performance for serverless applications interacting with shared
storage offerings in the cloud. Shared storage solutions for serverless are not part of
the scope for this work since it focuses on local file system I/O performance. However,
studies that performed measurements on shared file systems compatible with server-
less applications can give relevant insights to be applied on functions interacting with
the local file system.

The work in (ROY; PATEL; TIWARI, 2021) compares the performance of high
concurrency I/O between S3 and EFS in the context of AWS Lambda and AWS using 3
benchmark applications. In this scenario, applications can interact with EFS through a
standard file system interface while I/O operations targeting S3 are performed through
an HTTP Application Programming Interface (API). It was found that concurrency le-
vels negatively affects the performance of EFS but not S3, meaning that the latter is
preferred for high concurrency workloads.

Some serverless applications may also consume temporary intermediate data
in a shared storage. The Pocket distributed data store presented in (KLIMOVIC et al.,
2018b) followed the motivations described in (KLIMOVIC et al., 2018a) to provide a low
cost storage solution for serverless analytics with the capability to automatically scale
CPU, network bandwidth and storage capacity so that applications are not bottlenecked
by I/O. Results showed that Pocket achieved similar performance to ElastiCache Redis,
which is a in-memory datastore service provided by AWS (AWS, 2023a), while reducing
cost by almost 60%.

3.3 SERVERLESS LOCAL FILE SYSTEM I/O PERFORMANCE

Serverless functions can access temporary storage using the local file system.
In contrast with other offerings like S3 and GCS, the underlying storage for the local
file system of functions is not guaranteed to be shared between different runtimes
(SREERAM, 2017; AWS, 2023l; GCP, 2023i), even though function instances will share
it if they run concurrently in the same VM host (MAISSEN et al., 2020). The following
work closely relate to the scope of this work and focused on investigating performance
aspects of the local file system of serverless functions in the cloud.

The impact of concurrent function invocations in local file system I/O latency
was investigated by (LEE; SATYAM; FOX, 2018) while comparing the performance
overhead from concurrency between AWS Lambda, GCF, MAF and IBM OpenWhisk.
The study found that the overhead for I/O operations to the temporary directory ranged
from 91% in AWS Lambda to 338% in IBM OpenWhisk for 100 concurrent executions,
while MAF failed to complete the executions within the time limit of 5 minutes. Even
though the influence of other factors were not investigated in this work, these results

39

38

illustrate how different levels of latency can be expected due to implementation diffe-
rences in the underlying serverless platforms. In addition, it establishes the number of
concurrent function executions as a relevant factor to file system I/O performance.

The work in (KIM; LEE, 2020) explored local file system read and write I/O
performance in the serverless context using a suite of I/O benchmarks provided in
FunctionBench (KIM; LEE, 2019) while evaluating the impact of memory size confi-
gurations and concurrent execution in AWS Lambda. Even though function placement
cannot be controlled by users, I/O bandwidth is negatively impacted by the number
of concurrent executions on a function host. It was also found that I/O performance is
indirectly affected by CPU performance and increases proportionally to resource allo-
cation. In addition, the performance of I/O bound applications like image processing
and MapReduce was compared between AWS Lambda and GCF. It was found that
I/O is a bottleneck for functions with high resource allocation, and not having isolation
for allocating or limiting I/O resources negatively impacts overall performance in this
context. On the other hand, not having this level of isolation is beneficial to I/O per-
formance with low resource allocation. This work has not compared I/O performance
between the providers.

The negative impact of concurrent function executions on the same host to
local file system I/O performance was also found in (WANG et al., 2018). The results
of experiments in AWS Lambda, GCF and MAF showed different I/O throughput con-
tention characteristics for each provider. In all cases, the I/O throughput of function
instances decreased as concurrency levels increased. I/O throughput measurements
for AWS Lambda were stable between different instances, with CVs ranging from 1%
to 6% for all concurrency levels. In GCF and MAF, the maximum measured through-
put per instance increased as more resources were allocated to functions. In contrast,
the maximum file system I/O throughput for an individual function instance in AWS
Lambda was measured at low resource allocation, meaning that the throughput sca-
ling is limited in this platform. This suggests that overallocating resources to functions
lead to an increase on the available throughput for I/O operations per instance in GCF
and MAF but not AWS Lambda. This study did not cover a performance comparison
between providers. It also did not provide enough performance variability information
for assessing the predictability of functions in GCF and MAF.

The performance impact of the adoption of microVMs by AWS Lambda and
GCF was investigated in (PARK; KIM; LEE, 2020). Performance was evaluated with
CPU, network and file system I/O intensive workloads while varying memory configu-
rations and the level of concurrent executions. Consistent with prior research, this study
observed a proportional enhancement in performance corresponding to the resource
allocation of the function. However, in contrast to earlier findings, this study discovered

40

39

that performance degradation was not substantial as concurrency levels increased.
This can be attributed to recent improvements on function runtime scheduling algo-
rithms, which ensured the execution of functions instances in separate virtual machine
hosts and mitigated any negative impact on performance. These findings highlight the
evolving aspect of serverless as an emerging paradigm and the importance of repe-
ating performance evaluations periodically. This study did not establish a statistically
supported comparison of performance and predictability among the different server-
less providers.

A comparison of latency and bandwidth between EFS and local storage in
AWS Lambda was explored in (CHOI; LEE, 2020). This evaluation was performed
using the FunctionBench I/O benchmarks (KIM; LEE, 2019) under different two me-
mory configurations: 512 MB and 2 GB. The outcomes revealed that augmenting the
configured RAM size of AWS Lambda does not improve performance with EFS, whe-
reas the benefit for local storage is significant. Local storage also had higher bandwidth
and lower latency when compared to EFS for all memory configurations. The authors
suggested that the results of the comparison were heavily influenced by network per-
formance affecting communication between function runtimes and the remote EFS sto-
rage. This bottleneck is not present while accessing function local storage.

The work in (KELLY; GLAVIN; BARRETT, 2020) measured local file system
I/O performance in AWS Lambda, GCF and MAF with the goal to unveil the archi-
tecture characteristics of the underlying platforms, as well as the effect of factors like
memory allocation and environment isolation to overall performance. Its results con-
firmed the findings in (WANG et al., 2018): The file system I/O throughput increased
proportionally to the resource allocation of functions in GCF, while in AWS Lambda
the throughput scaling reached a plateau at low memory allocation (512 MB). In ad-
dition, GCF had superior overall I/O throughput when compared to AWS Lambda and
MAF, while the latter had the lowest throughput. This performance was attributed to
GCF having an in-memory file system. The range of performance data was higher in
GCF when compared to other platforms because of the heterogeneity identified in un-
derlying hardware. The results from MAF were limited since the authors were not able
to configure function resources due to MAF dynamic allocation characteristics. The
performance claims were not supported by statistical data: No confidence intervals
were reported for performance, and no CVs were reported for data variability. Finally,
results showed temporal patterns similar to those found in (GINZBURG; FREEDMAN,
2020; SCHIRMER et al., 2023; LAMBION et al., 2022) with latency peaks measured at
around 12:00pm, which correlates to higher use during business hours.

41

40

3.4 SERVERLESS PERFORMANCE PREDICTABILITY

Even though the serverless topic increased in popularity over the years, the
minority of published papers analyzed the statistical variation of the performance data.
However, it is the case for the research in (WEN et al., 2023) which has investiga-
ted the end-to-end response latency variance of 65 open source serverless functions
in AWS Lambda and GCF platforms. It was found that function performance tends to
have higher CV on warm starts compared to cold starts. It is also recommended that
function executions are repeated at least 50 times to achieve tight confidence intervals
around the mean. While this research examined performance variability on serverless
platforms, it focused solely on executing the tested functions on their respective server-
less platforms. It did not account for the application classes or consider the impact of
platform-specific characteristics on each class. Additionally, it did not conduct a com-
parative analysis of performance predictability among different providers.

Performance predictability can also be affected by the variability introduced
from factors outside of developer’s control. The study in (ELSAKHAWY; BAUER, 2021)
employed a CPU bound serverless function written in Python to examine how the se-
lection of an operating system, Python engine compiler, and language runtime version
influences the overall performance and variability. The outcomes of the study indicated
considerable variations in performance across different providers, with CVs approxima-
tely at 73% in GCF, 7% in AWS Lambda and 18% in MAF for the Python 3.7 runtime.
It was observed that the factors under evaluation had a noteworthy influence on the
overall performance, while having no impact on performance variability. Instead, the
variability was attributed to platform-specific architectural or implementation decisions.
Even though this work solely evaluated a CPU bound workload while isolating it from
I/O latency, it provides an indication of the impact of cloud platform choice on perfor-
mance predictability.

3.5 CONSIDERATIONS ABOUT THE RELATED WORK

The infrastructure abstraction offered by serverless computing can indeed be
advantageous, but it also limits developers from gaining a deeper understanding of
the underlying server architecture. Consequently, previous research in this domain has
primarily focused on identifying isolated factors that significantly impact performance,
with the aim of shedding light on the black-box nature of serverless platforms.

The first contribution of this work is to provide an aggregation of the factors that
affect local file system I/O performance and predictability. Experimenting with these
factors allow for investigating and comparing their impacts in performance and pre-
dictability for a local file system I/O workload across providers like AWS Lambda and

42

41

GCF. This aggregation answers RQ 1, and was made possible by analyzing prior re-
search and the literature around file system I/O. In addition, the findings in (KIM; LEE,
2020; PARK; KIM; LEE, 2020; CHOI; LEE, 2020; WANG et al., 2018) suggest CPU al-
location affects the performance of I/O operations in serverless environments. For this
reason, related work that investigated the performance of CPU bound workloads were
also taken into consideration for understanding the factors that can indirectly impact
the latency of I/O operations in the context of serverless. The following list presents
the resulting aggregation of factors that affect local file system I/O performance and
predictability:

1. Cloud serverless platform: The work in (COPIK et al., 2021; MARTINS; ARAUJO;
CUNHA, 2020; WEN et al., 2023; ELSAKHAWY; BAUER, 2021; LEE; SATYAM;
FOX, 2018; KIM; LEE, 2020; WANG et al., 2018; PARK; KIM; LEE, 2020; KELLY;
GLAVIN; BARRETT, 2020; BORTOLINI; OBELHEIRO, 2020) experimented with
more than one serverless platform and reported performance differences between
providers.

2. Time of day: While (EISMANN et al., 2022) reported stable performance for multi-
ple executions on the same day, the studies in (GINZBURG; FREEDMAN, 2020;
SCHIRMER et al., 2023; LAMBION et al., 2022; KELLY; GLAVIN; BARRETT,
2020) found temporal patterns suggesting that latency tends to be higher during
business hours.

3. Day of the week: The findings presented in (SCHIRMER et al., 2023) indicate
that performance tends to improve during weekends. This observation implies
a potential interaction with the time of day, suggesting that measurements taken
during daytime on weekends might yield different results compared to those taken
on weekdays.

4. Concurrent executions on the same host: The works in (KIM; LEE, 2020; LEE;
SATYAM; FOX, 2018; WANG et al., 2018) found that concurrent executions on
the same host can negatively impact performance, while (PARK; KIM; LEE, 2020)
found that the existence of this impact depends on the function runtime schedu-
ling algorithms employed by the platforms.

5. Deployment region: The findings in (GINZBURG; FREEDMAN, 2020) reveal per-
formance differences depending on the deployment region for an AWS Lambda
function by measuring executions in South Korea and the United States. Still, it
is not clear how much of the difference was due to infrastructure heterogeneity
between regions or the time of day in different time zones.

43

42

6. Hardware heterogeneity: The effect of hardware heterogeneity to performance
variability was reported by (KELLY; GLAVIN; BARRETT, 2020). In addition, the
variability results in (ELSAKHAWY; BAUER, 2021) also suggest a similar effect.
In general, higher levels of hardware heterogeneity leads to less performance
predictability.

7. Memory and CPU allocation: CPU resources are derived from memory alloca-
tion in AWS Lambda and GCF. Consequently, function memory allocation can
have an effect on I/O performance (COPIK et al., 2021; MARTINS; ARAUJO;
CUNHA, 2020; BORTOLINI; OBELHEIRO, 2020) even though it has diminishing
performance returns when increased beyond a threshold (LLOYD et al., 2018). In
addition, the share of file system I/O throughput for individual function instances is
affected by memory allocation as reported by (WANG et al., 2018; KELLY; GLA-
VIN; BARRETT, 2020). The work in (KIM; LEE, 2020; PARK; KIM; LEE, 2020)
found significant impact of CPU allocation in local file system I/O performance
respectively for AWS Lambda and GCF, while (SCHIRMER et al., 2023) found
variability decreased as more resources were added to the function instances in
GCF, thus increasing predictability. Besides, the amount of available memory can
dictate the number of cache hits from file system I/O operations (GREGG, 2014).

8. Programming language runtime: As investigated by (ELSAKHAWY; BAUER, 2021;
JACKSON; CLYNCH, 2018; BORTOLINI; OBELHEIRO, 2020), the choice of lan-
guage runtime interacts with the underlying serverless platform implementation
and affects function performance most notably for cold starts. Alternatively, (MAR-
TINS; ARAUJO; CUNHA, 2020) found that the selection of a programming lan-
guage typically does not have an effect on warm start performance within a ser-
verless provider, even though different platforms may yield varying performance
outcomes for the same programming language.

While previous studies have identified isolated factors that influence perfor-
mance, most of them did not conduct statistical analysis to examine the interactions
between these factors. Conducting an analysis of interactions between factors requi-
res simultaneously experimenting with all factors with varying levels, thus requiring a
high amount of experiments and repetitions. The analysis of interactions between fac-
tors is not part of the scope for this study, but is a suggestion for future work.

Some performance factors are not controllable by developers. For example,
there is no guarantee that sequential function triggers will lead to concurrent executions
on the same host since the runtime allocation and host VM lifecycles are managed
by the serverless platforms. Also, some workloads are time sensitive and cannot be
shifted outside of business hours or to weekends, and are vulnerable to interference

44

43

due to the lack of resource isolation in the platforms. This highlights how the lack of
control over the infrastructure and platform implementation can prevent developers and
users to develop accurate performance expectations. The effect of these factors can
introduce interference that in turn affect the level of performance predictability.

The level of hardware heterogeneity is a characteristic of the underlying plat-
form and may change over time and across regions. The deployment region and hard-
ware heterogeneity factors may be interchangeable, assuming the serverless plat-
form implementation and function allocation algorithms are the same between regions.
Since developers can choose the deployment region for functions, they can use this as
a tool to make a choice with the least hardware heterogeneity. In contrast, the choice
of deployment region usually maximizes the proximity to users in order to minimize
the effects of communication latency. In addition, cloud providers do not document the
expected levels of hardware heterogeneity in each region. As a result, the practicality
of tuning performance and predictability via the selection of a deployment region is
limited.

Similarly, the choice of programming language will often be guided by cold start
performance for short lived functions. The differences observed for warm start perfor-
mance will be more noticeable the longer a function executes. Functions developed in
C# .NET are an exception to this rule when executed in Microsoft’ platform. Also, me-
asuring the latency from file system operations enables gauging performance without
interference of the programming language choice.

Table 4 presents a comparison of related work regarding the existence of file
system I/O performance investigation, the serverless providers involved in the studies
and the type of comparisons conducted. Even though performance and predictability
comparisons between serverless providers were established in previous work, none
of them supported the comparisons with statistical evidence and confidence levels.
In addition, none of the previous work made comparative claims for predictability of
performance in the context of file system I/O.

Most previous work has focused on AWS Lambda as it is the most popu-
lar serverless platform to the detriment of other platforms such as GCF. This work
aims to bridge this gap by comparing performance between providers and investiga-
ting whether the conclusions previously drawn for AWS Lambda can also be applied
to GCF. Additionally, the majority of prior research focused on assessing CPU bound
functions, which represents a general use case, while local file system I/O constitutes
a relatively specialized and niche application within the serverless domain. This work
aims to bridge this gap by contributing with insights around the underrepresented local
file system I/O use case. To the best of our knowledge, the most recent work that in-
vestigated local file system I/O in GCF was published in 2020 when 2nd gen functions

45

44

Ta
bl

e
4

–
C

om
pa

ris
on

of
re

la
te

d
w

or
k

S
er

ve
rle

ss
pr

ov
id

er
C

om
pa

ris
on

be
tw

ee
n

pr
ov

id
er

s

R
el

at
ed

w
or

k
Lo

ca
l

fil
e

sy
st

em
I/O

AW
S

La
m

bd
a

G
C

F
P

re
di

ct
ab

ili
ty

Pe
rfo

rm
an

ce

(E
IS

M
A

N
N

et
al

.,
20

22
)

X
✓

X
X

X
(G

IN
ZB

U
R

G
;

FR
E

E
D

-
M

A
N

,2
02

0)
X

✓
X

X
X

(J
A

C
K

S
O

N
;

C
LY

N
C

H
,

20
18

)
X

✓
X

X
✓

(S
C

H
IR

M
E

R
et

al
.,

20
23

)
X

X
✓

X
X

(L
A

M
B

IO
N

et
al

.,
20

22
)

X
✓

X
X

X
(C

O
P

IK
et

al
.,

20
21

)
X

✓
✓

✓
✓

(L
LO

Y
D

et
al

.,
20

18
)

X
✓

X
X

X
(M

A
R

TI
N

S
;A

R
AU

JO
;C

U
-

N
H

A
,2

02
0)

X
✓

✓
X

✓

(W
E

N
et

al
.,

20
23

)
X

✓
✓

X
X

(E
LS

A
K

H
AW

Y;
B

AU
E

R
,

20
21

)
X

✓
✓

✓
X

(L
E

E
;

S
AT

YA
M

;
FO

X
,

20
18

)
✓

✓
✓

X
✓

(K
IM

;L
E

E
,2

02
0)

✓
✓

✓
X

X
(W

A
N

G
et

al
.,

20
18

)
✓

✓
✓

X
X

(P
A

R
K

;K
IM

;L
E

E
,2

02
0)

✓
✓

✓
X

X
(C

H
O

I;
LE

E
,2

02
0)

✓
✓

X
X

X
(K

E
LL

Y;
G

LA
V

IN
;

B
A

R
-

R
E

TT
,2

02
0)

✓
✓

✓
X

✓

S
ou

rc
e:

Th
e

au
th

or

46

45

were not yet available. This work also bridges this gap by conducting an up-to-date
analysis of 2nd gen functions in GCF.

As described by (WEN et al., 2023), previous published papers lacked statisti-
cal analysis over performance variation and nearly 60% of them did not provide enough
information about the number of repetitions used during performance experiments. This
work also aims to provide statistical background to performance comparisons and fac-
tor significance claims.

The study in (KELLY; GLAVIN; BARRETT, 2020) had the highest number of
similarities with the objectives of this research. It evaluated local file system I/O wor-
kloads in AWS Lambda and GCF while comparing performance. In addition, it was
published in 2020 when 2nd gen functions were not available in GCF. Like other previ-
ous work, it did not provide statistical background for the performance claims or enough
variation data in the form of coefficients of variance, standard deviation or other disper-
sion metrics. This work differentiates itself from that study by running the experiments
in the context of 2nd gen functions in GCF and deepening the predictability analysis
while making comparisons with statistical support.

The most recent works that investigated the performance of local file system
I/O in the serverless context were published in 2020 (KELLY; GLAVIN; BARRETT,
2020; CHOI; LEE, 2020; PARK; KIM; LEE, 2020; KIM; LEE, 2020). The serverless
platforms and implementations evolve over time suggesting experiments can yield dif-
ferent results when repeated in the future (PARK; KIM; LEE, 2020). Nevertheless, this
study introduces innovation by not only assessing performance, but also using vari-
ability to compare predictability across local file system workloads in the serverless
context.

47

46

4 METHODOLOGY

This chapter presents the methodology used to achieve the objectives listed
in Section 1.1.The general objective relates to establishing a performance and predic-
tability comparison between the local storage offerings from AWS Lambda and GCF
in serverless functions. The first specific objective of this work relates to aggregating
the factors that influence local file system I/O performance and predictability in the
serverless context, and was presented in Section 3.5.

The second specific objective is the development of heuristics to narrow down
a subset of factors from the aforementioned aggregation that are relevant for experi-
mentation. To achieve this objective, this work developed two heuristics for factor se-
lection presented in the following list:

• Heuristic 1: Remove factors that cannot be controlled or configured. In prac-
tice, the usefulness of the information gained by experimenting with these factors
is limited since developers cannot benefit from an optimal configuration or fine
tuning technique.

• Heuristic 2: Remove factors that do not have a clear minimum or maximum
level. Experimenting with the minimum and maximum levels of a factor is useful
in the context of a 𝑛2𝑚 experiment design. The selection of two extreme values
enables capturing whether the factor had an effect on the response variable. Not
having a clear choice of minimum and maximum levels can bias the results de-
pending on the chosen levels. For example, the result of an analysis of variance
has a high chance of indicating the factor is not relevant if both measured levels
have a similar effect on the response variable. For this reason, a full factorial
experiment design is a better fit for information gain on these factors.

Concurrent executions on the same host and hardware heterogeneity factors
were removed from the experiment through Heuristic 1. A discussion on why these fac-
tors are not configurable by developers was presented in Section 3.5. Alternatively, the
deployment region factor was removed by means of Heuristic 2 since it is not clear what
is the choice of level to minimize or maximize the latency of the tested I/O operations.
In addition, it is important to note that the choice of language runtime investigated in
(ELSAKHAWY; BAUER, 2021; JACKSON; CLYNCH, 2018; MARTINS; ARAUJO; CU-
NHA, 2020) was also not considered as a factor for experimentation. This decision
was made because the measurement of file system I/O latency was carried out using
the dd benchmark tool (GNU, 2023), which allowed for a consistent and controlled

48

47

assessment of the performance independently of the language runtime. Consequen-
tly, the performance overhead imposed by platforms to starting functions was also not
considered since running dd enables the experiments to focus on specific operations
performed after the execution environment is ready. It also means that cold and warm
starts do not interfere with the I/O experiments. A similar strategy for assessing perfor-
mance isolated from cold and warm start effects was also employed on previous work
(BORTOLINI; OBELHEIRO, 2020).

Experiments in this work followed the 𝑛2𝑚 design for capturing the set of re-
levant factors and interactions for all platforms. The main advantage of this design is
minimizing the number of experiments performed by using the minimum and maximum
level values for each factor. Then, future work can further investigate the relevant fac-
tors and interactions in more detail through a full factorial experiment. In addition, this
work aims to replicate each experiment configuration at least 50 times as suggested
by (WEN et al., 2023). Finally, if all 8 performance factors listed in the aggregation
presented in Section 3.5 were to be used in the experiment, it would require 12800
experiments in the context of a 𝑛2𝑚 design with 50 repetitions before considering any
additional parameters required by the benchmark tool. Applying the heuristics to derive
a subset of relevant factors has the benefit of further reducing the number of experi-
ments required and the analysis scope.

The latency of I/O operations was used as the performance metric and res-
ponse variable for the experiments. It is an LB metric and smaller values mean better
performance. In this context, latency can be defined as the time it takes for an I/O
operation to complete from the perspective of an application including all associated
subtasks. It is a measure of time and has resolution of 1 ms. ANOVA was then used
to process the latency measurements and evaluate the effects of the different factors
to performance. The performance comparisons were performed for each factor level
combination using confidence intervals from the experiment repetitions.

The CV was used as the predictability metric for latency. It is an LB metric
and a dimensionless measure of the variability present on the performance data rela-
tive to a mean value as defined in Eq. 2.1. In this context, less variability means more
performance predictability. The observation of the latency alongside the CV allows for
characterizing the performance and predictability of local file system I/O operations in
the context of serverless. Calculating a CV requires a collection of latency measure-
ments. Consequently, each CV measurement was taken out of a collection of latency
measurements over all combinations of factor levels in the 𝑛2𝑚 experiment design.
For this reason, this work compared the predictability between both providers directly
through the calculated CV values from latency observations. In addition, small CV dif-
ferences (inferior to 10%) were considered negligible for developers intending to use

49

48

AWS Lambda or GCF for local file system workloads. This study focused on shedding
light on the large CV differences observed on the experiments.

Even though AWS Lambda (AWS Lambda) allows for a higher level of custo-
mization through the use of Docker images, other microbenchmarks like Flexible I/O
Tester (FIO) are not available from function code by default and cannot be installed. In
addition, the FunctionBench serverless benchmark tool does not have a file I/O bench-
mark that supports sequential and random I/O for both AWS Lambda and GCF (KIM;
LEE, 2019). For these reasons, the dd benchmark was used for collecting latency me-
asurements from local file system I/O operations (GNU, 2023). Even though it does
not support random I/O operations, dd is a convenient choice since it is installed on the
underlying operating systems of both AWS Lambda and GCF platforms by default and
can be called from function code without any customization that can introduce noise
or other side effects to the performance results. The dd benchmark took the following
parameters during the experiments in this work:

1. I/O size: Random operations typically yield better performance with smaller I/O
sizes, while sequential operations on large files may benefit from using larger I/O
sizes (GREGG, 2014). For this reason, it is expected that this factor impact I/O
performance depending on the file size.

2. File size: Caching strategies employed to file systems can interact with the amount
of memory available and the size of the files being written or read (GREGG,
2014). File sizes smaller than the main memory favors caching and enables the
investigation of the file system software. In contrast, file sizes larger than the main
memory minimizes the caching effects and drives the benchmark toward testing
disk I/O.

3. Operation type: Read or write operations. The performance of file system ope-
rations can vary based on their type. Similarly to access patterns, different file
system optimization techniques may apply depending on the type of I/O opera-
tion (GREGG, 2014).

All read operations were performed using direct I/O, while leaving the write
operations subject to caching at the operating system level. Opting for direct I/O on
read operations prevented any residuals from previous write operations on a same
function runtime. Allowing for operating system caching effects on write operations
aims to replicate the perceived performance of a real application writing a file. Addi-
tionally, /dev/urandom was used as the input file for write operations. While reading
from this file introduces latency, this overhead is expected to be similar across both

50

49

providers, ensuring that it does not interfere with the performance comparisons of this
work.

As described on Section 2.1.1, AWS Lambda allows for configuring any me-
mory value between 128 MB and 3 GB to functions in new accounts and CPU allocation
is derived from memory. Conversely, GCF has a tiered approach to memory settings
such that each tier has a corresponding memory and CPU allocation with little flexibility
within any given tier. From the perspective of AWS Lambda memory allocation limit of 3
GB to new accounts, the closest GCF memory tiers immediately below and above are,
respectively, 2 GB and 4 GB (AWS, 2024; AWS, 2023c; GCP, 2023g). Consequently,
the maximum matching memory allocation between both providers is 2 GB. This is a
limitation imposed by AWS Lambda memory allocation limits. As discussed in 2.1.1, it
is not clear when or how an AWS account gets allowed for allocating functions beyond
3 GB.

Regarding CPU, GCF has a limiting factor for compatibility of allocation set-
tings between providers due to the restrictive tiered approach. Similarly, the amount of
CPUs allocated to functions in AWS Lambda is determined by its memory settings. This
results in a limitation that prevents independent control of CPU allocated to functions.
Consequently, instead of using memory and CPU allocation as an experiment factor,
we applied a tiered approach so that resource settings between AWS Lambda and GCF
are compatible. The tiers were built by picking a memory allocation size starting from
128 MB, deriving the corresponding CPU allocation in AWS Lambda and adjusting the
settings in any given GCF tier to minimize the CPU difference between both providers.
This allowed for full compatibility of memory settings while maximizing compatibility of
CPU. This approach resulted in the resource allocation tiers 1 to 5 presented in Table 5
along with corresponding percent difference of CPU allocation on each tier. Tiers 1 and
5 were used in the context of a 𝑛2𝑚 experiment design with minimum and maximum
levels.

Table 5 – Resource allocation compatibility tiers

vCPU

Tier Memory (MB) AWS Lambda (Derived) GCF Compatible % Difference

1 128 ≈ 0.072 0.083 0.080 -10.562
2 256 ≈ 0.145 0.167 0.145 -0.197
3 512 ≈ 0.289 0.333 0.289 0.148
4 1024 ≈ 0.579 0.583 0.579 -0.024
5 2048 ≈ 1.158 1 1 13.623

Source: The author

Finally, Table 6 presents the final subset of relevant factors to be considered in
the 𝑛2𝑚 experiment design along with the variable benchmark parameters and general

51

50

remarks. In addition, even though the long-term performance measurements sugges-
ted in (EISMANN et al., 2022) are not part of the scope for this work, a reproducibility
package is provided to assist with this task. This package increases the longevity of
the results by allowing the experiments to be repeated in the future.

Table 6 – Factors, levels and considerations for the 𝑛2𝑚 experiment

Levels

Factors Min Max General considerations

Platform AWS Lambda GCF In this context, AWS Lambda and
GCF are not directly related to mi-
nimum or maximum levels. Instead,
these are the only two alternatives
for the cloud serverless platform fac-
tor.

Time of day Business hours Off-hours The results presented in (SCHIR-
MER et al., 2023) indicate that the
performance of warm calls to the
tested function reached its maxi-
mum value before dawn while the
minimum occurred during business
hours (9 AM to 6 PM).

Day of week Workdays Weekends The findings in (SCHIRMER et al.,
2023) suggest performance diffe-
rences between workdays and we-
ekends. In this context, we collected
data over arbitrary days during both
periods.

Resource
tier

1 5 We modeled resource tiers to ma-
ximize resource allocation compa-
tibility between AWS Lambda and
GCF. We presented these tiers in
Table 5.

I/O size 512 B 128 KB This choice of minimum and ma-
ximum I/O sizes allow for testing
the maximum realistic IOPS and th-
roughput in the context of sequential
read and write operations (GREGG,
2014)

52

51

Table 6 – continued from previous page

Levels

Factors Min Max General considerations

File size 10 KB 1 GB This work’s goal is to analyze the
performance of I/O operations from
the perspective of an application in-
teracting with the local file system.
The author believes this file size
range is enough for benchmarking
both the file system software and
the underlying disk. It is also repre-
sentative of what applications would
consider small and large files.

Operation
type

Read Write Since the performance of file sys-
tem operations depend on the ope-
ration type, we experimented with
read and write operations.

Source: The author

Even though Table 6 presented a comprehensive list of relevant factors for
experimentation, the domain of I/O and serverless introduces compatibility aspects
that limit the possible interactions between factors. These aspects are modeled as
Compatibility Rules (CRs) as follows:

• CR 1: I/O size must not be higher than file size. Applications use a number of
I/O operations to perform reads or writes. The sum of I/O sizes multiplied by the
number of operations must equal the intended file size. For example, writing a 10
KB file requires 2 I/O operations with 5 KB size. Consequently, it is not possible
to experiment with I/O sizes higher than file sizes.

• CR 2: File size must be smaller than allocated memory. As shown in Table 1
and discussed in 2.1, GCF file system is held in memory. Consequently, it is not
possible to experiment with file sizes higher than the memory allocated to a GCF
instance.

In the context of the list of factors presented on Table 6, CR 1 enforces that file
sizes of 10 KB can only operate with I/O size equal to 512 B. In addition, due to CR

53

52

2, large files (1 GB) can only be manipulated on tier 5 functions, according to Table 5.
The interaction between incompatible factors should be disregarded. This results in a
reduced number of experiments relative to a 𝑛2𝑚 experiment with all factors on Table 6
and their interactions.

54

53

5 EXPERIMENTS

This chapter presents the experiments performed on the AWS Lambda and
GCF platforms regarding performance and predictability of local file system I/O ope-
rations in serverless functions. The already mentioned Table 6 presents the 7 factors
identified from previous work and the benchmark tool that was used to drive the 𝑛2𝑚

experiment design. Besides the aforementioned heuristics for factor selection, other
opportunities to reduce the number of factors required for the 𝑛2𝑚 experiment design
were explored in a preliminary experiment.

Even though previous results in (SCHIRMER et al., 2023) identified time of
day and day of week as relevant factors for serverless performance, it reported per-
formance variations of ∼15% between business and off-hours, and ∼4% between we-
ekdays and weekends. These results were also not backed by statistical evidence. In
addition, these factors increase the complexity of the experiments since they require
measurements to be performed at specific times and days of the week. For this reason,
and due to the magnitude of reported performance differences and the lack of statisti-
cal background for these results, a preliminary experiment was conducted to evaluate
if time of day and day of week factors are relevant enough to further experimentation
in the main 𝑛2𝑚 experiment design proposed for this work. Section 5.1 describes this
preliminary experiment.

On the sequence, results from the preliminary experiment were taken into con-
sideration for the main experiment with the remaining factors. Section 5.2 presents the
main experiment.

5.1 PRELIMINARY EXPERIMENT: TIME OF DAY AND DAY OF WEEK FACTORS

The goal of this preliminary experiment is to evaluate the effect of the time of
day and day of week factors for local file system I/O performance in both serverless
platforms. For this reason, constant values were set to the factors and levels in Table 6,
excepting for cloud serverless platform, time of day and day of week. Table 7 presents
the resulting factor and level values for this preliminary experiment. This experiment
makes use of the same benchmark tool and response variable as the main experiment
described in Chapter 4.

Measurements for time of day and day of week factors are time sensitive. Con-
sequently, measurements were taken every minute over 4 days while varying the factor
levels equally. This means each factor level combination accounted for 1/23 of the total
measurements for 3 varying factors. This approach allowed for a wider coverage of

55

54

Table 7 – Factors and levels for the preliminary experiment

Levels

Factors Min Max Constant

Cloud serverless platform AWS Lambda GCF
Time of day Business hours Off-hours
Day of week Workdays Weekends
Memory and CPU allocation 2 GB
I/O size 1 MB
File size 1 GB
Operation type Write

Source: The author

time over a weekend and the beginning of the following week. It also allowed for more
data points than a 𝑛2𝑚 experiment design. This experimentation approach allowed for
collecting 5700 measurements from 00:00 on Saturday 11/11/2023 to 23:59 on Tues-
day 11/14/2023. Fig. 3 presents histograms for the collected data on both serverless
platforms.

Lambda

Latency (ms)

F
re

qu
en

cy

600 800 1000 1200 1400 1600 1800

0
50

0
15

00
25

00

GCF

Latency (ms)

F
re

qu
en

cy

600 800 1000 1200 1400 1600 1800

0
50

0
15

00
25

00

Figure 3 – Histograms for collected data on AWS Lambda and GCF in the preliminary experiment
Source: The author

Both distributions are right-skewed, asymmetric and unimodal. AWS Lambda
has a lower mode in the interval (700,800] ms compared to GCF between (1000,1100]
ms. The CVs for AWS Lambda and GCF are ∼11.6% and ∼2.8%, respectively. In this
context, data for AWS Lambda presented more outliers distant from its mode than
GCF. Even though this data brings some insights on what to expect from experiments
in both platforms, this preliminary experiment’s goal is to evaluate the time of day and
day of week factors.

First, the confidence intervals for the mean latency were compared between
AWS Lambda and GCF for weekdays and weekends. Then, a comparison was also

56

55

established for business hours and off-hours. Fig. 4 presents the confidence intervals
supporting these comparisons with a confidence level of 95%.

No pair of confidence intervals have an overlap that includes a mean value.
For this reason, based solely on the confidence intervals, it is not possible to affirm that
there are no statistically significant differences between latencies measured during the
week and weekends on either platform. Similarly, the same can be said for latencies
measured during business hours and off-hours in both platforms. These evidences so
far confirm the findings in (SCHIRMER et al., 2023).

Day of week

G
C

F
Lam

bda

Weekday Weekend

1040

1044

1048

770

780

790

La
te

nc
y

(m
s)

Time of day

G
C

F
Lam

bda

Business hours Off−hours

1040

1050

1060

765

770

775

780

La
te

nc
y

(m
s)

Figure 4 – Confidence intervals for the mean latencies in AWS Lambda and GCF for day of week and
time of day factors in the preliminary experiment

Source: The author

ANOVA was also performed for latency data in AWS Lambda and GCF. As
presented in the ANOVA table for AWS Lambda in Table 8, the 𝐹 values for both time
of day and day of week are higher than 𝐹𝑐𝑟𝑖𝑡, meaning that both factors are statistically
significant at a confidence level of 95%. In this context, conversely to day of week,
the 𝐹 value for the time of day factor is close to 𝐹𝑐𝑟𝑖𝑡 and would not be significant at
the confidence level of 99% where 𝐹𝑐𝑟𝑖𝑡 is 6.64. Table 9 presents the ANOVA table for
GCF. Similarly to AWS Lambda, the time of day factor is statistically significant at a
confidence level of 95%. Alternatively, day of week is not a statistically significant factor
at the same confidence level.

Finally, the goal is to evaluate the magnitude of the latency differences measu-
red for each level in each factor. Since both distributions are asymmetric and unimodal,
its more appropriate to use medians for this evaluation instead of the mean values. Ta-
ble 10 presents the level medians for both factors measured in AWS Lambda and GCF.
The results for this latency difference evaluation are also showed in Table 11 alongside
a summary of the factor significance from the aforementioned ANOVA results and the

57

56

Table 8 – Resulting ANOVA in AWS Lambda for the preliminary experiment

Source of Varia-
tion

Degrees
of Freedom Sum of Squares (%) 𝐹 Value 𝐹𝑐𝑟𝑖𝑡[0.95, 1, 2847]

Time of day 1 0.14 3.92
3.84Day of week 1.93 56.127

Residuals 2847 97.93

Total 2849 100

Source: The author

Table 9 – Resulting ANOVA in GCF for the preliminary experiment

Source of Varia-
tion

Degrees
of Freedom Sum of Squares (%) 𝐹 Value 𝐹𝑐𝑟𝑖𝑡[0.95, 1, 2847]

Time of day 1 8.11 251.55
3.84Day of week 0.01 0.09

Residuals 2847 91.88

Total 2849 100

Source: The author

calculated percent differences between the level medians for time of day and day of
week factors.

Table 10 – Level medians for time of day and day of week factors in the preliminary experiment

AWS Lambda (ms) GCF (ms)

Business hours Off hours Business hours Off hours
Time of day 756.497 756.399 1055.700 1038.595

Weekdays Weekends Weekdays Weekends
Day of week 758.693 755.125 1044.550 1038.290

Source: The author

Table 11 – Factor significance and difference between level medians for each cloud provider in the pre-
liminary experiment

Factor
ANOVA

Statistically significant?
Difference between
level medians (%)

AWS Lambda GCF AWS Lambda GCF

Time of day ✓ ✓ 0.01 1.65
Day of week ✓ X 0.47 0.60

Source: The author

Even though the work in (SCHIRMER et al., 2023) did not encompass AWS
Lambda, it found that time of day and day of week factors are significant for GCF. Ne-
vertheless, this preliminary experiment found that these factors are also statistically

58

57

significant for AWS Lambda and a local file system I/O workload. Conversely, the day
of week factor is not statistically significant for GCF, to the contrary of what was pre-
viously reported. Finally, it is possible to conclude that, for data collected over 4 days,
these factors have small contributions to the overall latency values as suggested by a
maximum difference between level medians of 1.65% for time of day in GCF. In addi-
tion, the maximum total variation attributed to one of these factors was 8.11% for time
of day in GCF. For these reasons, these factors were discarded from the main 𝑛2𝑚

experiment design of this work in favor of more repetitions with the remaining factors
depending on time, availability and quantity limitations for experiments.

5.2 MAIN EXPERIMENT

The results from the main experiment presented in this section relate to the
specific objectives described on Section 1.1.2. The goal is to establish a comparison
of performance and predictability of local file system I/O operations in AWS Lambda
and GCF. Each experiment configuration was repeated 150 times, going beyond the
recommendation of 50 repetitions from (WEN et al., 2023). As seen on Section 5.1, the
time of day and day of week factors were discarded from the main experiment due to
insufficient contributions to overall latency values.

It is expected that I/O operations for small files are faster compared to large
files. Similarly, performance is not comparable between writes and reads. These are
different in nature and are subject to different caching techniques employed by the ope-
rating system. For these reasons, this section is divided into 4 subsections, exploring
the combination of operation type and file size factor levels in each subsection. Small
and large files are referred to as the minimum and maximum levels of the file size fac-
tor. Latency measurements of I/O operations on large and small files were reported in
seconds and milliseconds, respectively.

As described in Chapter 4, the CV was used as the predictability metric for
latency. CV results and comparisons were presented at the end of each subsection.
CV is an LB metric and all comparisons were made directly through the calculated CV
values from 150 repetitions on each experiment configuration. In addition, all results
were produced and observed using a 95% confidence level.

Finally, the results presented in the following subsections made use of the
Empirical Cumulative Distribution Function (ECDF) plot as a tool to assess the per-
centiles of the collected data and identify where most values occur. This plot depicts
the latency, as the response variable for the performance experiments, on the X axis
and its corresponding percentile on the Y axis. In an example, a data point on (1,0.75)
means the 75% percentile for the presented data is 1 second (or millisecond, depen-

59

58

ding on the unit used). Consequently, 75% of the latency data is less than 1 second.
It is important to note that the ECDF results were presented in pairs while some pairs
have different scales for the X axis. This was necessary to properly demonstrate the
tightness of results involving a particular factor.

5.2.1 Write operations on large files

Write operations on large files are compatible with all I/O size levels. Conver-
sely, due to CR 2, only the maximum level of memory and CPU resource allocation is
compatible (tier 5). The list of factors and levels used for write operations on large files
is presented on Table 12.

Table 12 – Factors and levels for write operations on large files

Levels

Factors Min Max Constant

Cloud serverless platform AWS Lambda GCF
I/O size 512 B 128 KB
Resource tier Tier 5
File size 1 GB
Operation type Write

Source: The author

An observation of the ECDF on Figure 5 suggests AWS Lambda shows up
more performance both for the minimum and maximum I/O size levels. The latency on
the 50th percentiles (medians) of AWS Lambda were 7.85 and 3.60 seconds for the
minimum and maximum I/O sizes, respectively. GCF presented medians of 9.54 and
4.07 seconds under the same settings. Additionally, Appendix A presents histograms
of write latency on large files.

The performance difference suggested by the ECDF observation is confirmed
by the confidence intervals in Figure 6. AWS Lambda had mean latencies of 7.79 and
3.62 seconds for the minimum and maximum I/O sizes, respectively. Comparatively,
GCF had mean latencies of 9.55 and 4.06 seconds for the same settings. These results
also show how the overall latency for write operations on large files decreased as the
I/O size increased.

Table 13 presents the ANOVA table for the experiment with write operations
on large files. All factors and interactions were statistically significant (𝐹 Value > 𝐹𝑐𝑟𝑖𝑡).
The interaction between provider and I/O size is significant, suggesting the effect of
I/O size levels on performance is different on each provider. Nevertheless, this does
not challenge AWS Lambda from having higher performance compared to GCF in this
setting.

60

59

Table 13 – Resulting ANOVA for write operations on large files

Source of Varia-
tion

Degrees
of Freedom Sum of Squares (%) 𝐹 Value 𝐹𝑐𝑟𝑖𝑡[0.95, 1, 596]

Platform
1

5.89 2619

3.86I/O size 90.18 40109
Platform:I/O size 2.59 1152
Residuals 596 1.34

Total 599 100

Source: The author

On large files, as presented on Figure 7, AWS Lambda was more predictable
than GCF when using I/O sizes of 512 B. Conversely, AWS Lambda was less predicta-
ble when using an I/O size of 128 KB.

512 B 128 KB

4 6 8 10 4 6 8 10

0.00

0.25

0.50

0.75

1.00

Latency (s)

P
er

ce
nt

ile

Platform GCF AWS Lambda

Figure 5 – ECDF of write latency for an 1 GB file in AWS Lambda and GCF using 512 B and 128 KB I/O
sizes

Source: The author

61

60

512 B 128 KB

GCF AWS Lambda GCF AWS Lambda

3.6

3.7

3.8

3.9

4.0

4.1

8.0

8.5

9.0

9.5

Provider

La
te

nc
y

(s
)

Figure 6 – Confidence intervals of write latency for an 1 GB file in AWS Lambda and GCF using 512 B
and 128 B I/O sizes

Source: The author

5.04

2.12

4.20

3.16

0

1

2

3

4

5

512 B 128 KB
I/O size

C
V

 (
%

)

Platform GCF AWS Lambda

Figure 7 – CVs for write operations on large files
Source: The author

62

61

5.2.2 Write operations on small files

Write operations on small files are compatible with all memory and CPU re-
source allocation levels. Conversely, due to CR 1, only the minimum I/O size level is
compatible. Table 14 presents the list of factors and levels used for write operations on
small files.

Table 14 – Factors and levels for write operations on small files

Levels

Factors Min Max Constant

Cloud serverless platform AWS Lambda GCF
Resource tier Tier 1 Tier 5
I/O size 512 B
File size 1 GB
Operation type Write

Source: The author

Even though GCF performance is higher for the minimum resource allocation
level, as can be observed on the ECDF in Figure 8, AWS Lambda performance appro-
aches at high resource settings. The 50th percentile (medians) on AWS Lambda was
approximately 0.26 ms for both tiers 1 and 5. GCF had medians of 0.27 and 0.28 ms
under the same settings. Additionally, Appendix B presents histograms of write latency
on small files.

Figure 9 presents confidence intervals for the latency observed on both re-
source tiers. Mean latencies for AWS Lambda were 7.90 and 0.28 ms for tiers 1 and 5,
respectively. GCF had mean latencies of 4.22 and 0.31 ms for the same settings. Since
the interval overlap in tier 5 contains both means, it is not possible to statistically affirm
performance is different between AWS Lambda and GCF at high resource allocation
for write operations on small files. Even though there is an overlap on the interval in
tier 1, it does not include mean values. For this reason, further investigation is needed
to statistically determine if GCF is faster on low resource settings.

Table 15 presents the ANOVA table for this experiment. The resource tier was
the only statistically significant factor in this setting (𝐹 Value > 𝐹𝑐𝑟𝑖𝑡). Consequently,
the effect of the chosen cloud platform is not statistically significant to latency on this
confidence level. Even though results shown in Figure 9 are not conclusive for low
resource allocation, the ANOVA results indicate performance differences between both
platforms are mostly due to the resource tier and random error.

Figure 10 presents the CVs for write operations on small files. In this context,
AWS Lambda was generally more predictable than GCF, with a large CV difference of

63

62

Table 15 – Resulting ANOVA for write operations on small files

Source of Varia-
tion

Degrees
of Freedom Sum of Squares (%) 𝐹 Value 𝐹𝑐𝑟𝑖𝑡[0.95, 1, 596]

Platform
1

0.57 3.62

3.86Resource tier 5.64 36.09
Platform:Resource
tier 0.58 3.72

Residuals 596 93.21

Total 599 100

Source: The author

333.46 percentage points on tier 1. The CV difference between providers was smaller
on tier 5 when compared to tier 1 (4.67 percentage points).

Tier 1 Tier 5

0 50 100 150 1 2

0.00

0.25

0.50

0.75

1.00

Latency (ms)

P
er

ce
nt

ile

Platform GCF AWS Lambda

Figure 8 – ECDF of write latency for a 10 KB file with 512 B I/O size in AWS Lambda and GCF using
minimum and maximum resource tiers

Source: The author

64

63

Tier 1 Tier 5

GCF AWS Lambda GCF AWS Lambda

0.275

0.300

0.325

2.5

5.0

7.5

10.0

Provider

La
te

nc
y

(m
s)

Figure 9 – Confidence intervals of write latency for a 10 KB file with 512 B I/O size in AWS Lambda and
GCF using minimum and maximum resource tiers

Source: The author

482.05

148.59

70.62 65.95

0

100

200

300

400

500

Tier 1 Tier 5
Resource tier

C
V

 (
%

)

Platform GCF AWS Lambda

Figure 10 – CVs for write operations on small files
Source: The author

65

64

5.2.3 Read operations on large files

Similarly to Section 5.2.1, as a result of CR 2, read operations on large files
are compatible with all I/O size levels but only compatible with the maximum level of
memory and CPU resource allocation (tier 5). The list of factors and levels used for
read operations on large files is presented on Table 16.

Table 16 – Factors and levels for read operations on large files

Levels

Factors Min Max Constant

Cloud serverless platform AWS Lambda GCF
I/O size 512 B 128 KB
Resource tier Tier 5
File size 1 GB
Operation type Read

Source: The author

ECDF results in Figure 11 indicate that GCF has better performance on all
cases even though the latency difference between providers reduced when increasing
the I/O size. Median latencies for AWS Lambda were 265.31 and 29.80 seconds for the
minimum and maximum I/O sizes, respectively. On GCF, the medians were 4.79 and
0.08 seconds under the same settings. Additionally, Appendix C presents histograms
of read latency on large files.

This performance difference suggested by the ECDF is confirmed by the con-
fidence intervals in Figure 12. The mean latencies for AWS Lambda were 265.25 and
23.39 seconds for the minimum and maximum I/O sizes, respectively. The mean la-
tencies observed on GCF were 4.79 and 0.08 seconds under the same settings. In
addition, similarly to the observations on write operations, increasing the I/O size level
also increased the overall performance of read operations on large files.

Table 17 presents the ANOVA table for this experiment. All factors and interac-
tions are significant (𝐹 Value > 𝐹𝑐𝑟𝑖𝑡).

Figure 13 presents the CV results for read operations on large files. AWS
Lambda is more predictable than GCF for I/O sizes of 512 B but less predictable on I/O
sizes of 128 KB by an absolute difference of 40.14 percentage points.

66

65

Table 17 – Resulting ANOVA for read operations on large files

Source of Varia-
tion

Degrees
of Freedom Sum of Squares (%) 𝐹 Value 𝐹𝑐𝑟𝑖𝑡[0.95, 1, 596]

Platform
1

40.06 98403

3.86I/O size 31.07 76326
Platform:I/O size 28.62 70304
Residuals 596 0.25

Total 599 100

Source: The author

512 B 128 KB

0 100 200 0 100 200

0.00

0.25

0.50

0.75

1.00

Latency (s)

P
er

ce
nt

ile

Platform GCF AWS Lambda

Figure 11 – ECDF of read latency for an 1 GB file in AWS Lambda and GCF using 512 B and 128 B I/O
sizes

Source: The author

67

66

512 B 128 KB

GCF AWS Lambda GCF AWS Lambda

0

10

20

0

100

200

Provider

La
te

nc
y

(s
)

Figure 12 – Confidence intervals of read latency for an 1 GB file in AWS Lambda and GCF using 512 B
and 128 KB I/O sizes

Source: The author

7.18

10.07

0.13

50.21

0

10

20

30

40

50

512 B 128 KB
I/O size

C
V

 (
%

)

Platform GCF AWS Lambda

Figure 13 – CVs for read operations on large files
Source: The author

68

67

5.2.4 Read operations on small files

Similarly to Section 5.2.2, due to CR 1, read operations on small files are com-
patible with all memory and CPU resource allocation levels, but only with the minimum
I/O size level. The list of factors and levels used for read operations on small files is
presented on Table 18.

Table 18 – Factors and levels for read operations on small files

Levels

Factors Min Max Constant

Cloud serverless platform AWS Lambda GCF
Resource tier Tier 1 Tier 5
I/O size 512 B
File size 1 GB
Operation type Read

Source: The author

Visual analysis of the ECDF on Figure 14 indicates that GCF performs better
at the minimum resource allocation settings (tier 1), despite having more outliers com-
pared to AWS Lambda. At maximum resource settings, AWS Lambda achieved similar
but still inferior performance.

The median latencies for AWS Lambda were, respectively, 20.30 and 0.84 ms
for tiers 1 and 5. GCF had median latencies of approximately 0.21 ms on both resource
tiers. A closer look on the confidence intervals in Figure 15 indicate GCF had better
performance on all resource allocation settings with mean latencies of 6.18 and 0.23
ms for resource tiers 1 and 5, respectively. Mean latencies observed on AWS Lambda
were 26.36 and 0.89 ms under the same settings. Additionally, Appendix D presents
histograms of write latency on small files.

ANOVA results in Table 19 shows all factors are statistically significant (𝐹 Value
> 𝐹𝑐𝑟𝑖𝑡), confirming the observations on the ECDF and confidence intervals. Figure 16
presents the CVs for read operations on small files. In this context, when compared to
GCF, results showed AWS Lambda was more predictable on tier 1 but less predictable
on tier 5 by an absolute difference of 10.43 percentage points.

69

68

Table 19 – Resulting ANOVA for read operations on small files

Source of Varia-
tion

Degrees
of Freedom Sum of Squares (%) 𝐹 Value 𝐹𝑐𝑟𝑖𝑡[0.95, 1, 596]

Platform
1

10.21 105.39

3.86Resource tier 23.16 259.30
Platform:Resource
tier 8.94 92.34

Residuals 596 57.69

Total 599 100

Source: The author

Tier 1 Tier 5

0 25 50 75 100 1 2 3

0.00

0.25

0.50

0.75

1.00

Latency (ms)

P
er

ce
nt

ile

Platform GCF AWS Lambda

Figure 14 – ECDF of read latency for a 10 KB file with 512 B I/O size in AWS Lambda and GCF using
minimum and maximum resource tiers

Source: The author

70

69

Tier 1 Tier 5

GCF AWS Lambda GCF AWS Lambda

0.2

0.4

0.6

0.8

10

20

Provider

La
te

nc
y

(m
s)

Figure 15 – Confidence intervals of read latency for a 10 KB file with 512 B I/O size in AWS Lambda and
GCF using minimum and maximum resource tiers

Source: The author

366.53

39.06

21.94
32.37

0

100

200

300

Tier 1 Tier 5
Resource tier

C
V

 (
%

)

Platform GCF AWS Lambda

Figure 16 – CVs for read operations on small files
Source: The author

71

70

6 DISCUSSION

As presented on Section 2.1, GCF uses an in-memory file system to support lo-
cal I/O operations on serverless environments. Conversely, even though AWS Lambda
does not disclosure the inner workings of its local file system on functions, it is not
implemented in-memory since its size can be configured independently from memory
allocation. The in-memory file system of GCF might give an expectation of highly per-
formant I/O operations. In reality, applications communicating with the local file system
of serverless functions will do so through the operating systems. The caching techni-
ques employed by these systems can have an effect on the performance observed by
applications. Unlike read, experiments with write operations in this work did not use
direct I/O and were subject to caching. In this context, results for write operations on
large files showed better latency performance for AWS Lambda on all cases. For small
files, the serverless provider’s effect on performance was not statistically significant for
a confidence level of 95%.

The aforementioned results showed that the performance expectations for the
in-memory file system of GCF were not met when compared to AWS Lambda. The ob-
served performance is due to file system caching techniques. As a consequence, appli-
cations communicating with the local file system of these serverless environments will
perceive a latency level from AWS Lambda that is at least competitive, and sometimes
better, when compared to GCF’s in-memory file system.

On the other hand, experiments with read operations used direct I/O and are
not subject to caching at the operating system level. In this scenario, GCF had signifi-
cantly better latency performance on all cases when compared to AWS Lambda. The
lack of a file system caching layer made the advantages of the in-memory file system
implementation of GCF more apparent, reinforcing the caching effects also observed
on write operations. This granted GCF better latency for direct I/O read operations.

The number of I/O operations performed to write or read a file is inversely
proportional to the I/O size used. Consequently, more I/O operations are performed
when writing a large file (1 GB) with 512 B I/O size when compared to 128 KB. In
addition, these operations are more vulnerable to the interference of external factors
and network overhead as the number of I/O operation increases. For this reason, the
performance differences between AWS Lambda and GCF were larger when using the
minimum I/O size. This can be observed on Figures 5 and 11 for write and read opera-
tions, respectively. This pattern was only observed for large files since CR 1 limits the
I/O size options for small files.

72

71

Both write and read operations had performance improvements when increa-
sing their resource allocation levels from tier 1 to tier 5. This confirms observations from
previous work that the resource allocation was a significant factor to the performance
of file I/O operations. These observations were presented on Section 3.5. Besides re-
source allocation, increasing the I/O size for write and read operations with large files
also increased performance, even though the aggregation of factors from previous work
presented on Section 3.5 did not observe the I/O size as a relevant factor. This is a re-
sult of the lower number of I/O operations required to process (read or write) a large
file when using an I/O size of 128 KB. It also contributes to reducing the vulnerability to
external factors interfering with I/O communication.

This work used the CV for measuring and driving the predictability compari-
sons between providers. In the context of predictability, even though AWS Lambda
was generally more predictable for write operations on small files, there was a large
CV difference of 333.46 percentage points observed with the minimum resource allo-
cation level (tier 1). This difference was significantly smaller for tier 5 (4.67 percentage
points). Besides this difference, both providers had smaller CVs on tier 5 when com-
pared to tier 1. In general, CV results in tier 1 were significantly higher than tier 5. This
indicates that increasing the resource allocation has an effect of increasing predicta-
bility under these settings and confirms the findings in (SCHIRMER et al., 2023). This
observed behavior is attributed to higher resource contention present on tier 1 when
compared to tier 5. In addition, when compared to tier 5, there is a high likelihood that
providers will group a higher number of tier 1 functions on the same physical host. This
increases the sources of interference, which can raise variability even without direct
contention (KIM; LEE, 2020; LEE; SATYAM; FOX, 2018; WANG et al., 2018). CV dif-
ferences between AWS Lambda and GCF were negligible for other experiments with
write operations.

When comparing the latency predictability of small and large files, with the
exception of AWS Lambda’s CV for read operations on large files with 128 KB I/O
size (50.21%), small files showed higher CVs. The highest and smallest CVs for small
files are 482.05% and 21.94%, respectively. Comparatively, the highest and smallest
CVs for large files are 50.21% and 0.13%, respectively. One possible reason for this
behavior is that latency overhead introduced by I/O communication, as a source of
variability, was more impactful for operations on small files when compared to large
files.

Even though GCF had better overall latency performance for read operations
when compared to AWS Lambda, AWS Lambda had significantly better predictability
with a CV difference of 327.47% for small files with tier 1 resource allocation. Even
so, the latency performance difference under these settings is on the order of 20 ms.

73

72

In this case, developers can make a decision of whether higher predictability is worth
a loss of latency performance. Conversely, a noticeable CV difference of 40.14% in
favor of GCF is observed for large files with 128 KB I/O size. In this case, GCF had
better predictability besides better latency performance. The CV for AWS Lambda on
read operations for large files with 512 B of I/O size is noticeably low (0.13%). Regar-
dless of the low CV, AWS Lambda had a mean latency of 265.25 seconds, significantly
higher than GCF with 4.79 seconds under the same settings. This highlights how high
predictability may lose its value if performance levels are not reasonable.

Table 20 presents a summary of the comparative analysis of performance and
predictability between AWS Lambda and GCF. Small (10 KB) and large (1 GB) files
represent the minimum and maximum levels of the file size factor.

Table 20 – Summary of performance and predictability results

Best performance Best predictability

Write Read (Direct I/O) Write Read (Direct I/O)

Small files - GCF AWS Lambda𝑎 AWS Lambda𝑎

Large files AWS Lambda GCF - GCF𝑏

𝑎 Only on small resource allocation (tier 1)
𝑏 Only on high I/O size (128 KB)

Source: The author

The use of dd as the benchmark tool was successful for this experiment. It
was a reliable tool for collecting latency data from AWS Lambda and GCF serverless
environments, and offered options for direct I/O. Even so, it has the limitation of only
supporting sequential I/O. Still, sequential I/O is representative of the majority of ser-
verless use cases since random I/O requires manipulating offsets and is consequently
a less common access pattern. For instance, the default code examples for the file
system module on NodeJS indicate sequential I/O instead of a random access pattern
(NODE.JS, 2024).

In addition, there is a trade off of customizing the serverless environments
with other benchmark tools that are not native to the platform, via a Docker image for
example, versus leveraging limited native tooling like dd. Installing custom tooling on
the environments while preventing systematic error is also challenging since platforms
do not offer a common way of customizing the environments. Future work may leverage
new ways of customizing the serverless environments so that other tools besides dd
can be used for experimentation while preventing the introduction of systematic error.

Using the default file system module of a programming language would be an
alternative to dd for the goal of measuring the performance and predictability of I/O

74

73

operations. Even though using these modules is representative of what applications
would do in reality, it also introduces the programming language as a factor. There
might be significant performance differences between file system modules of different
languages. For this reason, this work made option for dd as a language agnostic ben-
chmarking tool.

Chapter 4 presented the concept of resource tiers as a model to achieve re-
source compatibility between AWS Lambda and GCF. By using this strategy, this work
was able to leverage full memory compatibility between both providers with a CPU
difference of approximately 13.62% in the worst case. Therefore, this strategy was
successful for modeling a common resource allocation structure for both providers with
negligible CPU allocation differences. Also, the need for a compatibility strategy high-
lights the heterogeneity of configuration options between providers.

Extending the performance and predictability comparisons of this work to other
serverless providers poses challenges related to a common resource compatibility mo-
del. Microsoft Azure Functions (MAF), for example, enforces a dynamic resource allo-
cation strategy for functions depending on demand (AZURE, 2019). On MAFs, develo-
pers have no control of memory and CPU allocation. Extending the performance and
predictability comparisons to MAFs would be significantly more complex in terms of
achieving resource compatibility between all three providers.

This work employed a 𝑛2𝑚 experiment design to maximize the gain of infor-
mation with less experiments when compared to a full factorial design even though
the CRs limited possible interactions between factors. These restrictions reduced the
number of possible level combinations, and consequently the number of experiments,
beyond the level limitations introduced by the 𝑛2𝑚 experiment design. Even so, this
work successfully used the 𝑛2𝑚 experiment design within the CR limitations as seen in
the factors and levels used in Sections 5.2.1 to 5.2.4.

In the context of serverless platforms, the usage of AWS Lambda with a new
account introduced a memory ceiling of 3 GB as described in Section 2.1.1. Conse-
quently, this work was not able to comparatively explore high memory allocation sce-
narios such as 32 GB GCF functions. Even within the aforementioned limitations, this
work successfully explored the performance and predictability comparisons of the com-
patible factors using their minimum and maximum levels in a 𝑛2𝑚 experiment design.

The experiments in this work employed direct I/O for read operations only.
When writing files, applications will perceive performance with the effect of caching
techniques applied at the operating system levels. When reading, there is a possibility
that a portion of the files exists in memory, enabling applications to leverage the effects
of caching. When reading after writing, there is a high probability of cache hit since the

75

74

file was just written, but there is no guarantee of the amount of data living in cache
at the time of reading. It depends on the state of the system and memory available,
among other factors. Consequently, it would be difficult to minimize systematic error
when measuring read operations without direct I/O. At the same time, GCF’s file sys-
tem is implemented in-memory, and comparing it to AWS Lambda with direct I/O gives
GCF an advantage. This advantage has been proven true in this work since GCF had
better performance on all read experiments.

Conversely, when looking at write operations, AWS Lambda had equal and
superior performance results for small and large files, respectively. These results give
an indication that AWS Lambda applications communicating with the local file system
through the operating system may leverage performance levels that are competitive
with in-memory file systems. In addition, AWS Lambda has the advantage of allowing
for a configurable size for the local file system with lower cost when compared to me-
mory allocation. Even though these write results cannot be directly transposed to read
operations, a new experiment that explores sequential read operations on the same
file might shed more light on this difference and address the use case of using files
in the local file system as a cache for API calls. Even so, it is expected for GCF to
have similar read performance to what was found in this work since the absence of a
particular storage device, external storage or disk, results in communication with the
memory regardless of whether the I/O operation is direct or not.

Results indicated performance is higher and more predictable with a high allo-
cation of CPU and memory resources. Similarly, it was found that the performance of
I/O operations depends on the choice of I/O size. In this context, even though server-
less pricing depends on the amount of allocated resources, as seen on Section 2.1, the
I/O size is a configurable parameter that does not increase costs. Developers should
conduct specific analysis to determine the optimal configuration for any given workload
considering aspects such as cost and performance levels.

76

75

7 CONCLUSION

Serverless computing is an emerging paradigm with increasing popularity due
to its ease of deployment and pay-per-use billing model. However, the lack of control
that results from the computing infrastructure abstraction makes it difficult for deve-
lopers to reliably meet or fine tune performance requirements specially for I/O bound
applications that interact with a local file system. In the context of migrating legacy soft-
ware to serverless, performance predictability is key when evaluating if the migration is
financially worthwhile.

A preliminary experiment was performed to evaluate if the time of day and
day of week factors are statistically significant to local file system I/O performance
in AWS Lambda and GCF as reported by (SCHIRMER et al., 2023) in GCF. It was
found that, besides the time of day factor for GCF, all the other factors are statistically
significant for both serverless platforms. Still, this preliminary experiment concludes
that these factors have small contributions to the overall latency magnitude of file I/O
operations as suggested by a maximum difference between level medians of 1.65%
for the time of day factor in GCF. In addition, the maximum total variation attributed
to one of these factors was 8.11% for time of day in GCF. For these reasons, these
factors were discarded from this work’s main 𝑛2𝑚 experiment design in favor of more
repetitions with the remaining factors.

On the main experiment, even though GCF had better overall performance for
read operations with direct I/O, AWS Lambda had better performance for write opera-
tions on large files (1 GB). No statistically significant differences were found for write
operation performance between GCF and AWS Lambda on small files (10 KB). These
results challenge the expectation that GCF would have better performance across read
and write operations since its local file system is held in-memory.

Small CV differences (inferior to 10%) were considered negligible for develo-
pers intending to use AWS Lambda or GCF for their local file system workloads. From
this perspective, AWS Lambda had better predictability than GCF for reads and write
operations to small files (10 KB) when operating with low allocation of resources (tier
1). This is not the case for large files (10 GB). Alternatively, performance on read opera-
tions for GCF was significantly better than AWS Lambda on all cases due to the direct
I/O aspect. In this context, superior predictability may not be valuable to developers if
the performance is not competitive, and even though AWS Lambda had better predic-
tability under specific read scenarios, it does not hold value since GCF’s performance
was significantly higher. Nevertheless, knowing that AWS Lambda is more predicta-

77

76

ble for write operations under low resource allocation for small files with competitive
performance to GCF is valuable to developers. In addition, AWS Lambda has better
performance on write operations on large files with similar predictability to GCF.

One of the contributions of this work is to shed some light into the black-box
nature of serverless platforms and help developers making informed decisions on using
these platforms. The discussion and results found in this work allow for the following
recommendations to developers considering AWS Lambda and GCF platforms for local
file system I/O workloads:

1. Prefer GCF for read heavy workloads. It has an in-memory file system, and is
able to consistently deliver performance levels equivalent to I/O cache hits.

2. Prefer AWS Lambda for write heavy workloads. It delivers equal or better perfor-
mance to GCF and allows for configuring the local file system size independently
from memory at a lower cost. It is also significantly more predictable than GCF at
low resource allocation levels.

3. Performance is more predictable with more memory and CPU resources. Our
results showed that the CV values from operations with small files decreased
when moving the resource allocation tier from 1 to 5.

4. Even though I/O operations for small files (10 KB) are fast, they are less predic-
table. Our results showed mostly higher CV’s for operations with small files when
compared to large files.

5. I/O performance increases with more memory and CPU resources allocated to
functions. Specific analysis should be conducted to determine the optimal re-
source allocation for any given workload from the perspective of cost. Results in
this work showed that small files written and read with high resources (tier 5) had
better performance when compared to low resources (tier 1) on both platforms.

6. I/O performance depends on I/O size. Differently from the resource allocation, in-
creasing or decreasing the I/O size does not directly impact cost. Specific analy-
sis should be conducted to determine the optimal I/O size for any given file I/O
workload. Results in this work showed that large files (1 GB) written and read
with 128 KB of I/O size had better performance when compared to 512 B on both
platforms.

Significant performance differences between AWS Lambda and GCF were
found for read operations using direct I/O. Developers have no control of the memory
state or execution environment of serverless functions. For this reason, direct I/O was

78

77

needed in this case to isolate the reads from any previous write operations on the same
function and consequently minimize bias and systematic error. Nevertheless, future
work should further investigate read operations and the impact of consecutive reads
on a same file. This would better address the static assets caching use case suggested
by Amazon Web Services on (AWS, 2023e). Even though GCF had better performance
on reads with direct I/O, the results will possibly be different for consecutive reads on
the same file when allowing for cache on the operating system level.

This work used the 𝑛2𝑚 experiment design as a strategy to maximize the in-
formation gained from experimentation while reducing the number of factor level com-
binations required. Future work should consider expanding the experiments to a full
factorial design, and analyze the interaction present on a broader combination of fac-
tors. Although it requires a high level of experimentation and replications, this analysis
contributes to discovering if any intermediate factor interaction is relevant to determi-
ning performance and predictability. It also allows for further investigating if the trends
seen in this work are also valid when looking at more intermediate levels. For example,
even though this work found that predictability increases when increasing resources
from tier 1 to tier 5, more data and analysis is required to check if this holds true also
for tier 3.

In addition, future work can use experimentation to further explore and com-
pare the impact of deployment region choice in performance and predictability across
different serverless providers. Finally, future work can also extend these investigations
and other aforementioned investigations to more serverless platforms beyond AWS
Lambda and GCF.

The general and specific objectives presented on Section 1.1 aim to answer
the Research Questions (RQ) established in Chapter 1. This work’s results allowed for
Research Answers (RA) to each question, as follows:

• RQ1: What is the aggregation of factors that affect performance and predictability
in the context of local file system I/O operations from serverless functions?

RA1: Besides the aggregation of factors that influence serverless local file system
I/O performance and predictability presented in Section 3.5, results in this work
also showed I/O size is a configurable factor that influences performance.

• RQ2: Between AWS Lambda and GCF, which serverless provider yields the best
performance for local file system I/O operations?

RA2: The performance comparisons were discussed on Chapter 6 based on the
results presented on Chapter 5.2. These comparisons were summarized on Ta-
ble 20.

79

78

• RQ3: Between AWS Lambda and GCF, which serverless provider has the most
predictable performance for local file system I/O operations? In this context, more
predictability means less variability and dispersion of performance.

RA3: Similarly to RA2, the predictability comparisons were also discussed on
Chapter 6 and summarized on Table 20.

Finally, the findings on this work led to recommendations targeting developers
using or intending to use either AWS Lambda or GCF. Therefore, this work succes-
sfully achieved the intended specific and general objectives alongside the correspon-
ding answers to the research questions. In addition, a reproducibility package1 was
published including this work’s data for both the main and preliminary experiments
alongside all code related to orchestrating and analyzing these experiments.

1 Available on: https://github.com/gpr-indevelopment/dissert-serverless-local-io

80

79

BIBLIOGRAPHY

ALLEN, S. et al. CNCF Serverless whitepaper v1.0. 2023. Disponível em:
<https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/
cncf_serverless_whitepaper_v1.0.pdf>.

AWS. Amazon ElastiCache for Redis. 2023. Disponível em: <https://aws.amazon.
com/elasticache/redis/>.

AWS. AWS Lambda enables functions that can run up to 15 minu-
tes. 2023. Disponível em: <https://aws.amazon.com/about-aws/whats-new/2018/10/
aws-lambda-supports-functions-that-can-run-up-to-15-minutes/>.

AWS. AWS Lambda now supports up to 10 GB of me-
mory and 6 vCPU cores for Lambda Functions. 2023. Dis-
ponível em: <https://aws.amazon.com/about-aws/whats-new/2020/12/
aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/>.

AWS. AWS Lambda Pricing. 2023. Disponível em: <https://aws.amazon.com/lambda/
pricing/>.

AWS. Best practices for working with AWS Lambda functions. 2023. Disponível
em: <https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html>.

AWS. Choosing between AWS Lambda data storage options in
web apps. 2023. Disponível em: <https://aws.amazon.com/blogs/compute/
choosing-between-aws-lambda-data-storage-options-in-web-apps/>.

AWS. Configuring function timeout (console). 2023. Disponível em:
<https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.
html#configuration-timeout-console>.

AWS. Lambda extensions. 2023. Disponível em: <https://docs.aws.amazon.com/
lambda/latest/dg/lambda-extensions.html>.

AWS. Lambda function scaling. 2023. Disponível em: <https://docs.aws.amazon.
com/lambda/latest/dg/lambda-concurrency.html>.

AWS. Lambda quotas. 2023. Disponível em: <https://docs.aws.amazon.com/lambda/
latest/dg/gettingstarted-limits.html>.

AWS. Lambda runtimes. 2023. Disponível em: <https://docs.aws.amazon.com/
lambda/latest/dg/lambda-runtimes.html>.

AWS. Serverless on AWS. 2023. Disponível em: <https://aws.amazon.com/
serverless/>.

AWS. Working with Lambda container images. 2023. Disponível em: <https://docs.
aws.amazon.com/lambda/latest/dg/images-create.html>.

81

https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://aws.amazon.com/elasticache/redis/
https://aws.amazon.com/elasticache/redis/
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://aws.amazon.com/blogs/compute/choosing-between-aws-lambda-data-storage-options-in-web-apps/
https://aws.amazon.com/blogs/compute/choosing-between-aws-lambda-data-storage-options-in-web-apps/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-timeout-console
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-timeout-console
https://docs.aws.amazon.com/lambda/latest/dg/lambda-extensions.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-extensions.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html

80

AWS. Lambda: Concurrency and memory quotas. 2024. Disponível em:
<https://docs.aws.amazon.com/lambda/latest/dg/troubleshooting-deployment.html#
troubleshooting-deployment-quotas>.

AZURE. Making Azure Functions more “serverless”. 2019. Dispo-
nível em: <https://blogs.msdn.microsoft.com/appserviceteam/2016/11/15/
making-azure-functions-more-serverless/>.

BALDINI, I. et al. Serverless computing: Current trends and open problems. Research
advances in cloud computing, Springer, p. 1–20, 2017.

BORTOLINI, D.; OBELHEIRO, R. R. Investigating performance and cost in function-as-
a-service platforms. In: BAROLLI, L.; HELLINCKX, P.; NATWICHAI, J. (Ed.). Advances
on P2P, Parallel, Grid, Cloud and Internet Computing. Cham: Springer International
Publishing, 2020. p. 174–185. ISBN 978-3-030-33509-0.

CASTRO, P. et al. The server is dead, long live the server: Rise of serverless compu-
ting, overview of current state and future trends in research and industry. arXiv pre-
print arXiv:1906.02888, 2019.

CHOI, J.; LEE, K. Evaluation of network file system as a shared data storage in ser-
verless computing. In: Proceedings of the 2020 Sixth International Workshop on
Serverless Computing. [S.l.: s.n.], 2020. p. 25–30.

CNCF. CNCF Cloud Native Interactive Landscape - Serverless. 2023. Disponível
em: <https://landscape.cncf.io/serverless>.

COPIK, M. et al. Sebs: A serverless benchmark suite for function-as-a-service compu-
ting. In: Proceedings of the 22nd International Middleware Conference. [S.l.: s.n.],
2021. p. 64–78.

EISMANN, S. et al. A case study on the stability of performance tests for serverless
applications. Journal of Systems and Software, Elsevier, v. 189, p. 111294, 2022.

ELSAKHAWY, M.; BAUER, M. Performance analysis of serverless execution environ-
ments. In: IEEE. 2021 International Conference on Electrical, Communication, and
Computer Engineering (ICECCE). [S.l.], 2021. p. 1–6.

GCP. Cloud Functions 2nd gen is GA, delivering more events, compute and
control. 2023. Disponível em: <https://cloud.google.com/blog/products/serverless/
cloud-functions-2nd-generation-now-generally-available>.

GCP. Cloud Functions pricing. 2023. Disponível em: <https://cloud.google.com/
functions/pricing>. Acesso em: 15.5.2023.

GCP. Cloud Functions vs. Cloud Run: when to use one over the
other. 2023. Disponível em: <https://cloud.google.com/blog/products/serverless/
cloud-run-vs-cloud-functions-for-serverless>.

GCP. Cloud Storage. 2023. Disponível em: <https://cloud.google.com/storage>.

GCP. Function isolation. 2023. Disponível em: <https://cloud.google.com/functions/
docs/concepts/execution-environment#function-isolation>.

82

https://docs.aws.amazon.com/lambda/latest/dg/troubleshooting-deployment.html#troubleshooting-deployment-quotas
https://docs.aws.amazon.com/lambda/latest/dg/troubleshooting-deployment.html#troubleshooting-deployment-quotas
https://blogs.msdn.microsoft.com/appserviceteam/2016/11/15/making-azure-functions-more-serverless/
https://blogs.msdn.microsoft.com/appserviceteam/2016/11/15/making-azure-functions-more-serverless/
https://landscape.cncf.io/serverless
https://cloud.google.com/blog/products/serverless/cloud-functions-2nd-generation-now-generally-available
https://cloud.google.com/blog/products/serverless/cloud-functions-2nd-generation-now-generally-available
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://cloud.google.com/blog/products/serverless/cloud-run-vs-cloud-functions-for-serverless
https://cloud.google.com/blog/products/serverless/cloud-run-vs-cloud-functions-for-serverless
https://cloud.google.com/storage
https://cloud.google.com/functions/docs/concepts/execution-environment#function-isolation
https://cloud.google.com/functions/docs/concepts/execution-environment#function-isolation

81

GCP. Function timeout. 2023. Disponível em: <https://cloud.google.com/functions/
docs/configuring/timeout>.

GCP. Memory limits. 2023. Disponível em: <https://cloud.google.com/functions/docs/
configuring/memory>.

GCP. Scalability. 2023. Disponível em: <https://cloud.google.com/functions/quotas#
scalability>.

GCP. Serverless computing. 2023. Disponível em: <https://cloud.google.com/
serverless>.

GCP. Write Cloud Functions. 2023. Disponível em: <https://cloud.google.com/
functions/docs/writing>.

GINZBURG, S.; FREEDMAN, M. J. Serverless isn’t server-less: Measuring and exploi-
ting resource variability on cloud faas platforms. In: Proceedings of the 2020 Sixth
International Workshop on Serverless Computing. [S.l.: s.n.], 2020. p. 43–48.

GNU. dd: Convert and copy a file. 2023. Disponível em: <https://www.gnu.org/
software/coreutils/manual/html_node/dd-invocation.html>.

GOLI, A. et al. Migrating from monolithic to serverless: A fintech case study. In: Com-
panion of the ACM/SPEC International Conference on Performance Engineering.
[S.l.: s.n.], 2020. p. 20–25.

GREGG, B. Systems performance: enterprise and the cloud. 2. ed. [S.l.]: Pearson
Education, 2014.

HELLERSTEIN, J. M. et al. Serverless computing: One step forward, two steps back.
arXiv preprint arXiv:1812.03651, 2018.

HENNESSY, J. L.; PATTERSON, D. A. Computer architecture: a quantitative appro-
ach. 6. ed. [S.l.]: Elsevier, 2017.

JACKSON, D.; CLYNCH, G. An investigation of the impact of language runtime on the
performance and cost of serverless functions. In: IEEE. 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion). [S.l.],
2018. p. 154–160.

JAIN, R. The art of computer systems performance analysis: techniques for expe-
rimental design, measurement, simulation, and modeling. [S.l.]: Wiley New York,
1991. v. 1.

KATZER, J. Learning Serverless. [S.l.]: "O’Reilly Media, Inc.", 2020.

KELLY, D.; GLAVIN, F.; BARRETT, E. Serverless computing: Behind the scenes of
major platforms. In: IEEE. 2020 IEEE 13th International Conference on Cloud Com-
puting (CLOUD). [S.l.], 2020. p. 304–312.

KIM, J.; LEE, K. Practical cloud workloads for serverless faas. In: Proceedings of the
ACM Symposium on Cloud Computing. [S.l.: s.n.], 2019. p. 477–477.

83

https://cloud.google.com/functions/docs/configuring/timeout
https://cloud.google.com/functions/docs/configuring/timeout
https://cloud.google.com/functions/docs/configuring/memory
https://cloud.google.com/functions/docs/configuring/memory
https://cloud.google.com/functions/quotas#scalability
https://cloud.google.com/functions/quotas#scalability
https://cloud.google.com/serverless
https://cloud.google.com/serverless
https://cloud.google.com/functions/docs/writing
https://cloud.google.com/functions/docs/writing
https://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html
https://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html

82

KIM, J.; LEE, K. I/o resource isolation of public cloud serverless function runtimes for
data-intensive applications. Cluster Computing, Springer, v. 23, p. 2249–2259, 2020.

KLIMOVIC, A. et al. Understanding ephemeral storage for serverless analytics. In: 2018
USENIX Annual Technical Conference (USENIX ATC 18). [S.l.: s.n.], 2018. p. 789–
794.

KLIMOVIC, A. et al. Pocket: Elastic ephemeral storage for serverless analytics. In: 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
18). [S.l.: s.n.], 2018. p. 427–444.

LAMBION, D. et al. Characterizing x86 and arm serverless performance variation: A
natural language processing case study. In: Companion of the 2022 ACM/SPEC In-
ternational Conference on Performance Engineering. [S.l.: s.n.], 2022. p. 69–75.

LEE, H.; SATYAM, K.; FOX, G. Evaluation of production serverless computing environ-
ments. In: IEEE. 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). [S.l.], 2018. p. 442–450.

LILJA, D. J. Measuring computer performance: a practitioner’s guide. [S.l.]: Cam-
bridge university press, 2005.

LIU, F.; NIU, Y. Demystifying the cost of serverless computing: Towards a win-win deal.
IEEE Transactions on Parallel and Distributed Systems, IEEE, 2023.

LLOYD, W. et al. Serverless computing: An investigation of factors influencing micro-
service performance. In: IEEE. 2018 IEEE international conference on cloud engi-
neering (IC2E). [S.l.], 2018. p. 159–169.

MAISSEN, P. et al. Faasdom: A benchmark suite for serverless computing. In: Proce-
edings of the 14th ACM international conference on distributed and event-based
systems. [S.l.: s.n.], 2020. p. 73–84.

MARTINS, H.; ARAUJO, F.; CUNHA, P. R. da. Benchmarking serverless computing
platforms. Journal of Grid Computing, Springer, v. 18, p. 691–709, 2020.

MONTGOMERY, D. C. Design and analysis of experiments. 9th. ed. [S.l.]: John wiley
& sons, 2017.

NODE.JS. Node.js v22.2.0 fs documentation. 2024. Disponível em: <https://nodejs.
org/api/fs.html>.

PARK, J.; KIM, H.; LEE, K. Evaluating concurrent executions of multiple function-as-a-
service runtimes with microvm. In: IEEE. 2020 IEEE 13th International Conference
on Cloud Computing (CLOUD). [S.l.], 2020. p. 532–536.

PEKKALA, A. Migrating a web application to serverless architecture. 2019.

POSIT. RSTUDIO IDE. 2023. Disponível em: <https://posit.co/products/open-source/
rstudio/>.

RESEARCH; MARKETS. Serverless Architecture - Global Strategic Business Re-
port. 2023. Disponível em: <https://www.researchandmarkets.com/reports/4806010/
serverless-architecture-global-strategic>.

84

https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://posit.co/products/open-source/rstudio/
https://posit.co/products/open-source/rstudio/
https://www.researchandmarkets.com/reports/4806010/serverless-architecture-global-strategic
https://www.researchandmarkets.com/reports/4806010/serverless-architecture-global-strategic

83

RISTOV, S. et al. Daf: Dependency-aware faasifier for node. js monolithic applications.
IEEE Software, IEEE, v. 38, n. 1, p. 48–53, 2020.

ROY, R. B.; PATEL, T.; TIWARI, D. Characterizing and mitigating the i/o scalability chal-
lenges for serverless applications. In: IEEE. 2021 IEEE International Symposium on
Workload Characterization (IISWC). [S.l.], 2021. p. 74–86.

SCHIRMER, T. et al. The night shift: Understanding performance variability of cloud
serverless platforms. In: Proceedings of the 1st Workshop on SErverless Systems,
Applications and MEthodologies. [S.l.: s.n.], 2023. p. 27–33.

SILBERSCHATZ, A.; PETERSON, J. L.; GALVIN, P. B. Operating system concepts.
[S.l.]: John Wiley & Sons, Inc., 2012.

SINHA, P.; KAFFES, K.; YADWADKAR, N. J. Shabari: Delayed decision-making for
faster and efficient serverless function. arXiv preprint arXiv:2401.08859, 2024.

SOMU, N. et al. Panopticon: A comprehensive benchmarking tool for serverless ap-
plications. In: IEEE. 2020 International Conference on COMmunication Systems &
NETworkS (COMSNETS). [S.l.], 2020. p. 144–151.

SPILLNER, J.; DORODKO, S. Java code analysis and transformation into aws lambda
functions. arXiv preprint arXiv:1702.05510, 2017.

SREERAM, P. K. Azure serverless computing cookbook. [S.l.]: Packt Publishing Ltd,
2017.

TANENBAUM, A.; BOS, H. Modern Operating Systems. 4. ed. [S.l.]: Pearson, 2014.

WANG, L. et al. Peeking behind the curtains of serverless platforms. In: 2018 USENIX
Annual Technical Conference (USENIX ATC 18). [S.l.: s.n.], 2018. p. 133–146.

WEN, J. et al. Rise of the planet of serverless computing: A systematic review. ACM
Transactions on Software Engineering and Methodology, ACM New York, NY,
2023.

WEN, J. et al. An empirical study on challenges of application development in server-
less computing. In: Proceedings of the 29th ACM joint meeting on European soft-
ware engineering conference and symposium on the foundations of software
engineering. [S.l.: s.n.], 2021. p. 416–428.

WEN, J. et al. Revisiting the performance of serverless computing: An analysis of vari-
ance. arXiv preprint arXiv:2305.04309, 2023.

85

84

APPENDIX A – HISTOGRAMS OF WRITE LATENCY ON LARGE FILES (1 GB)

512 B 128 KB

7 8 9 10 3.4 3.6 3.8 4.0 4.2 4.4

0

10

20

30

40

Latency (s)

F
re

qu
en

cy

Provider GCF AWS Lambda

Figure 17 – Histograms of write latency for an 1 GB file in AWS Lambda and GCF using 512 B and 128
KB I/O sizes

Source: The author

86

85

APPENDIX B – HISTOGRAMS OF WRITE LATENCY ON SMALL FILES (10 KB)

Tier 1 Tier 5

0 50 100 150 0 1 2

0

50

100

Latency (ms)

F
re

qu
en

cy

Provider GCF AWS Lambda

Figure 18 – Histograms of write latency for a 10 KB file in AWS Lambda and GCF using minimum and
maximum resource tiers

Source: The author

87

86

APPENDIX C – HISTOGRAMS OF READ LATENCY ON LARGE FILES (1 GB)

512 B 128 KB

0 100 200 0 10 20 30

0

20

40

60

Latency (s)

F
re

qu
en

cy

Provider GCF AWS Lambda

Figure 19 – Histograms of read latency for an 1 GB file in AWS Lambda and GCF using 512 B and 128
KB I/O sizes

Source: The author

88

87

APPENDIX D – HISTOGRAMS OF READ LATENCY ON SMALL FILES (10 KB)

Tier 1 Tier 5

0 25 50 75 100 0 1 2 3

0

50

100

Latency (ms)

F
re

qu
en

cy

Provider GCF AWS Lambda

Figure 20 – Histograms of read latency for a 10 KB file in AWS Lambda and GCF using minimum and
maximum resource tiers

Source: The author

89

